ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imf Unicode version

Theorem imf 10290
Description: Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imf  |-  Im : CC
--> RR

Proof of Theorem imf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-im 10278 . 2  |-  Im  =  ( x  e.  CC  |->  ( Re `  ( x  /  _i ) ) )
2 imval 10284 . . 3  |-  ( x  e.  CC  ->  (
Im `  x )  =  ( Re `  ( x  /  _i ) ) )
3 imcl 10288 . . 3  |-  ( x  e.  CC  ->  (
Im `  x )  e.  RR )
42, 3eqeltrrd 2165 . 2  |-  ( x  e.  CC  ->  (
Re `  ( x  /  _i ) )  e.  RR )
51, 4fmpti 5451 1  |-  Im : CC
--> RR
Colors of variables: wff set class
Syntax hints:    e. wcel 1438   -->wf 5011   ` cfv 5015  (class class class)co 5652   CCcc 7348   RRcr 7349   _ici 7352    / cdiv 8139   Recre 10274   Imcim 10275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-2 8481  df-cj 10276  df-re 10277  df-im 10278
This theorem is referenced by:  imcn2  10706  climim  10711  fsumim  10867  imcncf  11643
  Copyright terms: Public domain W3C validator