| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fnmptfvd | GIF version | ||
| Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.) | 
| Ref | Expression | 
|---|---|
| fnmptfvd.m | ⊢ (𝜑 → 𝑀 Fn 𝐴) | 
| fnmptfvd.s | ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) | 
| fnmptfvd.d | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) | 
| fnmptfvd.c | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| fnmptfvd | ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnmptfvd.m | . . 3 ⊢ (𝜑 → 𝑀 Fn 𝐴) | |
| 2 | fnmptfvd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
| 3 | 2 | ralrimiva 2570 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉) | 
| 4 | eqid 2196 | . . . . 5 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑎 ∈ 𝐴 ↦ 𝐶) | |
| 5 | 4 | fnmpt 5384 | . . . 4 ⊢ (∀𝑎 ∈ 𝐴 𝐶 ∈ 𝑉 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) | 
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) | 
| 7 | eqfnfv 5659 | . . 3 ⊢ ((𝑀 Fn 𝐴 ∧ (𝑎 ∈ 𝐴 ↦ 𝐶) Fn 𝐴) → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) | |
| 8 | 1, 6, 7 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖))) | 
| 9 | fnmptfvd.s | . . . . . . . 8 ⊢ (𝑖 = 𝑎 → 𝐷 = 𝐶) | |
| 10 | 9 | cbvmptv 4129 | . . . . . . 7 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑎 ∈ 𝐴 ↦ 𝐶) | 
| 11 | 10 | eqcomi 2200 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷) | 
| 12 | 11 | a1i 9 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝐴 ↦ 𝐶) = (𝑖 ∈ 𝐴 ↦ 𝐷)) | 
| 13 | 12 | fveq1d 5560 | . . . 4 ⊢ (𝜑 → ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖)) | 
| 14 | 13 | eqeq2d 2208 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) | 
| 15 | 14 | ralbidv 2497 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑎 ∈ 𝐴 ↦ 𝐶)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖))) | 
| 16 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) | |
| 17 | fnmptfvd.d | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐷 ∈ 𝑈) | |
| 18 | eqid 2196 | . . . . . 6 ⊢ (𝑖 ∈ 𝐴 ↦ 𝐷) = (𝑖 ∈ 𝐴 ↦ 𝐷) | |
| 19 | 18 | fvmpt2 5645 | . . . . 5 ⊢ ((𝑖 ∈ 𝐴 ∧ 𝐷 ∈ 𝑈) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) | 
| 20 | 16, 17, 19 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) = 𝐷) | 
| 21 | 20 | eqeq2d 2208 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ (𝑀‘𝑖) = 𝐷)) | 
| 22 | 21 | ralbidva 2493 | . 2 ⊢ (𝜑 → (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = ((𝑖 ∈ 𝐴 ↦ 𝐷)‘𝑖) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) | 
| 23 | 8, 15, 22 | 3bitrd 214 | 1 ⊢ (𝜑 → (𝑀 = (𝑎 ∈ 𝐴 ↦ 𝐶) ↔ ∀𝑖 ∈ 𝐴 (𝑀‘𝑖) = 𝐷)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ↦ cmpt 4094 Fn wfn 5253 ‘cfv 5258 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 | 
| This theorem is referenced by: nninfdcinf 7237 nninfwlporlemd 7238 nninfwlporlem 7239 | 
| Copyright terms: Public domain | W3C validator |