ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmptfvd GIF version

Theorem fnmptfvd 5666
Description: A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
fnmptfvd.m (𝜑𝑀 Fn 𝐴)
fnmptfvd.s (𝑖 = 𝑎𝐷 = 𝐶)
fnmptfvd.d ((𝜑𝑖𝐴) → 𝐷𝑈)
fnmptfvd.c ((𝜑𝑎𝐴) → 𝐶𝑉)
Assertion
Ref Expression
fnmptfvd (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
Distinct variable groups:   𝐴,𝑎,𝑖   𝐶,𝑖   𝐷,𝑎   𝑀,𝑎,𝑖   𝑈,𝑎,𝑖   𝑉,𝑎,𝑖   𝜑,𝑎,𝑖
Allowed substitution hints:   𝐶(𝑎)   𝐷(𝑖)

Proof of Theorem fnmptfvd
StepHypRef Expression
1 fnmptfvd.m . . 3 (𝜑𝑀 Fn 𝐴)
2 fnmptfvd.c . . . . 5 ((𝜑𝑎𝐴) → 𝐶𝑉)
32ralrimiva 2570 . . . 4 (𝜑 → ∀𝑎𝐴 𝐶𝑉)
4 eqid 2196 . . . . 5 (𝑎𝐴𝐶) = (𝑎𝐴𝐶)
54fnmpt 5384 . . . 4 (∀𝑎𝐴 𝐶𝑉 → (𝑎𝐴𝐶) Fn 𝐴)
63, 5syl 14 . . 3 (𝜑 → (𝑎𝐴𝐶) Fn 𝐴)
7 eqfnfv 5659 . . 3 ((𝑀 Fn 𝐴 ∧ (𝑎𝐴𝐶) Fn 𝐴) → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖)))
81, 6, 7syl2anc 411 . 2 (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖)))
9 fnmptfvd.s . . . . . . . 8 (𝑖 = 𝑎𝐷 = 𝐶)
109cbvmptv 4129 . . . . . . 7 (𝑖𝐴𝐷) = (𝑎𝐴𝐶)
1110eqcomi 2200 . . . . . 6 (𝑎𝐴𝐶) = (𝑖𝐴𝐷)
1211a1i 9 . . . . 5 (𝜑 → (𝑎𝐴𝐶) = (𝑖𝐴𝐷))
1312fveq1d 5560 . . . 4 (𝜑 → ((𝑎𝐴𝐶)‘𝑖) = ((𝑖𝐴𝐷)‘𝑖))
1413eqeq2d 2208 . . 3 (𝜑 → ((𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖) ↔ (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖)))
1514ralbidv 2497 . 2 (𝜑 → (∀𝑖𝐴 (𝑀𝑖) = ((𝑎𝐴𝐶)‘𝑖) ↔ ∀𝑖𝐴 (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖)))
16 simpr 110 . . . . 5 ((𝜑𝑖𝐴) → 𝑖𝐴)
17 fnmptfvd.d . . . . 5 ((𝜑𝑖𝐴) → 𝐷𝑈)
18 eqid 2196 . . . . . 6 (𝑖𝐴𝐷) = (𝑖𝐴𝐷)
1918fvmpt2 5645 . . . . 5 ((𝑖𝐴𝐷𝑈) → ((𝑖𝐴𝐷)‘𝑖) = 𝐷)
2016, 17, 19syl2anc 411 . . . 4 ((𝜑𝑖𝐴) → ((𝑖𝐴𝐷)‘𝑖) = 𝐷)
2120eqeq2d 2208 . . 3 ((𝜑𝑖𝐴) → ((𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖) ↔ (𝑀𝑖) = 𝐷))
2221ralbidva 2493 . 2 (𝜑 → (∀𝑖𝐴 (𝑀𝑖) = ((𝑖𝐴𝐷)‘𝑖) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
238, 15, 223bitrd 214 1 (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  cmpt 4094   Fn wfn 5253  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  nninfdcinf  7237  nninfwlporlemd  7238  nninfwlporlem  7239
  Copyright terms: Public domain W3C validator