ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcinf Unicode version

Theorem nninfdcinf 7255
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
Hypotheses
Ref Expression
nninfdcinf.w  |-  ( ph  ->  om  e. WOmni )
nninfdcinf.n  |-  ( ph  ->  N  e. )
Assertion
Ref Expression
nninfdcinf  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Distinct variable groups:    i, N    ph, i

Proof of Theorem nninfdcinf
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5569 . . . . . 6  |-  ( f  =  N  ->  (
f `  x )  =  ( N `  x ) )
21eqeq1d 2213 . . . . 5  |-  ( f  =  N  ->  (
( f `  x
)  =  1o  <->  ( N `  x )  =  1o ) )
32ralbidv 2505 . . . 4  |-  ( f  =  N  ->  ( A. x  e.  om  ( f `  x
)  =  1o  <->  A. x  e.  om  ( N `  x )  =  1o ) )
43dcbid 839 . . 3  |-  ( f  =  N  ->  (DECID  A. x  e.  om  (
f `  x )  =  1o  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
5 nninfdcinf.w . . . 4  |-  ( ph  ->  om  e. WOmni )
65elexd 2784 . . . . 5  |-  ( ph  ->  om  e.  _V )
7 iswomnimap 7250 . . . . 5  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( om  e. WOmni  <->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
95, 8mpbid 147 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o )
10 nninfdcinf.n . . . . 5  |-  ( ph  ->  N  e. )
11 nninff 7206 . . . . 5  |-  ( N  e.  ->  N : om --> 2o )
1210, 11syl 14 . . . 4  |-  ( ph  ->  N : om --> 2o )
13 2onn 6597 . . . . . 6  |-  2o  e.  om
1413elexi 2783 . . . . 5  |-  2o  e.  _V
15 omex 4639 . . . . 5  |-  om  e.  _V
1614, 15elmap 6754 . . . 4  |-  ( N  e.  ( 2o  ^m  om )  <->  N : om --> 2o )
1712, 16sylibr 134 . . 3  |-  ( ph  ->  N  e.  ( 2o 
^m  om ) )
184, 9, 17rspcdva 2881 . 2  |-  ( ph  -> DECID  A. x  e.  om  ( N `  x )  =  1o )
1912ffnd 5420 . . . 4  |-  ( ph  ->  N  Fn  om )
20 eqidd 2205 . . . 4  |-  ( x  =  i  ->  1o  =  1o )
21 1onn 6596 . . . . 5  |-  1o  e.  om
2221a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  1o  e.  om )
2321a1i 9 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  om )
2419, 20, 22, 23fnmptfvd 5678 . . 3  |-  ( ph  ->  ( N  =  ( i  e.  om  |->  1o )  <->  A. x  e.  om  ( N `  x )  =  1o ) )
2524dcbid 839 . 2  |-  ( ph  ->  (DECID  N  =  ( i  e.  om  |->  1o )  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
2618, 25mpbird 167 1  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1372    e. wcel 2175   A.wral 2483   _Vcvv 2771    |-> cmpt 4104   omcom 4636   -->wf 5264   ` cfv 5268  (class class class)co 5934   1oc1o 6485   2oc2o 6486    ^m cmap 6725  ℕxnninf 7203  WOmnicwomni 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1o 6492  df-2o 6493  df-map 6727  df-nninf 7204  df-womni 7248
This theorem is referenced by:  nninfinfwlpo  7264
  Copyright terms: Public domain W3C validator