ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcinf Unicode version

Theorem nninfdcinf 7237
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
Hypotheses
Ref Expression
nninfdcinf.w  |-  ( ph  ->  om  e. WOmni )
nninfdcinf.n  |-  ( ph  ->  N  e. )
Assertion
Ref Expression
nninfdcinf  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Distinct variable groups:    i, N    ph, i

Proof of Theorem nninfdcinf
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5557 . . . . . 6  |-  ( f  =  N  ->  (
f `  x )  =  ( N `  x ) )
21eqeq1d 2205 . . . . 5  |-  ( f  =  N  ->  (
( f `  x
)  =  1o  <->  ( N `  x )  =  1o ) )
32ralbidv 2497 . . . 4  |-  ( f  =  N  ->  ( A. x  e.  om  ( f `  x
)  =  1o  <->  A. x  e.  om  ( N `  x )  =  1o ) )
43dcbid 839 . . 3  |-  ( f  =  N  ->  (DECID  A. x  e.  om  (
f `  x )  =  1o  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
5 nninfdcinf.w . . . 4  |-  ( ph  ->  om  e. WOmni )
65elexd 2776 . . . . 5  |-  ( ph  ->  om  e.  _V )
7 iswomnimap 7232 . . . . 5  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( om  e. WOmni  <->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
95, 8mpbid 147 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o )
10 nninfdcinf.n . . . . 5  |-  ( ph  ->  N  e. )
11 nninff 7188 . . . . 5  |-  ( N  e.  ->  N : om --> 2o )
1210, 11syl 14 . . . 4  |-  ( ph  ->  N : om --> 2o )
13 2onn 6579 . . . . . 6  |-  2o  e.  om
1413elexi 2775 . . . . 5  |-  2o  e.  _V
15 omex 4629 . . . . 5  |-  om  e.  _V
1614, 15elmap 6736 . . . 4  |-  ( N  e.  ( 2o  ^m  om )  <->  N : om --> 2o )
1712, 16sylibr 134 . . 3  |-  ( ph  ->  N  e.  ( 2o 
^m  om ) )
184, 9, 17rspcdva 2873 . 2  |-  ( ph  -> DECID  A. x  e.  om  ( N `  x )  =  1o )
1912ffnd 5408 . . . 4  |-  ( ph  ->  N  Fn  om )
20 eqidd 2197 . . . 4  |-  ( x  =  i  ->  1o  =  1o )
21 1onn 6578 . . . . 5  |-  1o  e.  om
2221a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  1o  e.  om )
2321a1i 9 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  om )
2419, 20, 22, 23fnmptfvd 5666 . . 3  |-  ( ph  ->  ( N  =  ( i  e.  om  |->  1o )  <->  A. x  e.  om  ( N `  x )  =  1o ) )
2524dcbid 839 . 2  |-  ( ph  ->  (DECID  N  =  ( i  e.  om  |->  1o )  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
2618, 25mpbird 167 1  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    |-> cmpt 4094   omcom 4626   -->wf 5254   ` cfv 5258  (class class class)co 5922   1oc1o 6467   2oc2o 6468    ^m cmap 6707  ℕxnninf 7185  WOmnicwomni 7229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186  df-womni 7230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator