ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcinf Unicode version

Theorem nninfdcinf 7288
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
Hypotheses
Ref Expression
nninfdcinf.w  |-  ( ph  ->  om  e. WOmni )
nninfdcinf.n  |-  ( ph  ->  N  e. )
Assertion
Ref Expression
nninfdcinf  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Distinct variable groups:    i, N    ph, i

Proof of Theorem nninfdcinf
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5588 . . . . . 6  |-  ( f  =  N  ->  (
f `  x )  =  ( N `  x ) )
21eqeq1d 2215 . . . . 5  |-  ( f  =  N  ->  (
( f `  x
)  =  1o  <->  ( N `  x )  =  1o ) )
32ralbidv 2507 . . . 4  |-  ( f  =  N  ->  ( A. x  e.  om  ( f `  x
)  =  1o  <->  A. x  e.  om  ( N `  x )  =  1o ) )
43dcbid 840 . . 3  |-  ( f  =  N  ->  (DECID  A. x  e.  om  (
f `  x )  =  1o  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
5 nninfdcinf.w . . . 4  |-  ( ph  ->  om  e. WOmni )
65elexd 2787 . . . . 5  |-  ( ph  ->  om  e.  _V )
7 iswomnimap 7283 . . . . 5  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( om  e. WOmni  <->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
95, 8mpbid 147 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o )
10 nninfdcinf.n . . . . 5  |-  ( ph  ->  N  e. )
11 nninff 7239 . . . . 5  |-  ( N  e.  ->  N : om --> 2o )
1210, 11syl 14 . . . 4  |-  ( ph  ->  N : om --> 2o )
13 2onn 6620 . . . . . 6  |-  2o  e.  om
1413elexi 2786 . . . . 5  |-  2o  e.  _V
15 omex 4649 . . . . 5  |-  om  e.  _V
1614, 15elmap 6777 . . . 4  |-  ( N  e.  ( 2o  ^m  om )  <->  N : om --> 2o )
1712, 16sylibr 134 . . 3  |-  ( ph  ->  N  e.  ( 2o 
^m  om ) )
184, 9, 17rspcdva 2886 . 2  |-  ( ph  -> DECID  A. x  e.  om  ( N `  x )  =  1o )
1912ffnd 5436 . . . 4  |-  ( ph  ->  N  Fn  om )
20 eqidd 2207 . . . 4  |-  ( x  =  i  ->  1o  =  1o )
21 1onn 6619 . . . . 5  |-  1o  e.  om
2221a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  1o  e.  om )
2321a1i 9 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  om )
2419, 20, 22, 23fnmptfvd 5697 . . 3  |-  ( ph  ->  ( N  =  ( i  e.  om  |->  1o )  <->  A. x  e.  om  ( N `  x )  =  1o ) )
2524dcbid 840 . 2  |-  ( ph  ->  (DECID  N  =  ( i  e.  om  |->  1o )  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
2618, 25mpbird 167 1  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773    |-> cmpt 4113   omcom 4646   -->wf 5276   ` cfv 5280  (class class class)co 5957   1oc1o 6508   2oc2o 6509    ^m cmap 6748  ℕxnninf 7236  WOmnicwomni 7280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1o 6515  df-2o 6516  df-map 6750  df-nninf 7237  df-womni 7281
This theorem is referenced by:  nninfinfwlpo  7297
  Copyright terms: Public domain W3C validator