ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcinf Unicode version

Theorem nninfdcinf 7334
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
Hypotheses
Ref Expression
nninfdcinf.w  |-  ( ph  ->  om  e. WOmni )
nninfdcinf.n  |-  ( ph  ->  N  e. )
Assertion
Ref Expression
nninfdcinf  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Distinct variable groups:    i, N    ph, i

Proof of Theorem nninfdcinf
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5625 . . . . . 6  |-  ( f  =  N  ->  (
f `  x )  =  ( N `  x ) )
21eqeq1d 2238 . . . . 5  |-  ( f  =  N  ->  (
( f `  x
)  =  1o  <->  ( N `  x )  =  1o ) )
32ralbidv 2530 . . . 4  |-  ( f  =  N  ->  ( A. x  e.  om  ( f `  x
)  =  1o  <->  A. x  e.  om  ( N `  x )  =  1o ) )
43dcbid 843 . . 3  |-  ( f  =  N  ->  (DECID  A. x  e.  om  (
f `  x )  =  1o  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
5 nninfdcinf.w . . . 4  |-  ( ph  ->  om  e. WOmni )
65elexd 2813 . . . . 5  |-  ( ph  ->  om  e.  _V )
7 iswomnimap 7329 . . . . 5  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( om  e. WOmni  <->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
95, 8mpbid 147 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o )
10 nninfdcinf.n . . . . 5  |-  ( ph  ->  N  e. )
11 nninff 7285 . . . . 5  |-  ( N  e.  ->  N : om --> 2o )
1210, 11syl 14 . . . 4  |-  ( ph  ->  N : om --> 2o )
13 2onn 6665 . . . . . 6  |-  2o  e.  om
1413elexi 2812 . . . . 5  |-  2o  e.  _V
15 omex 4684 . . . . 5  |-  om  e.  _V
1614, 15elmap 6822 . . . 4  |-  ( N  e.  ( 2o  ^m  om )  <->  N : om --> 2o )
1712, 16sylibr 134 . . 3  |-  ( ph  ->  N  e.  ( 2o 
^m  om ) )
184, 9, 17rspcdva 2912 . 2  |-  ( ph  -> DECID  A. x  e.  om  ( N `  x )  =  1o )
1912ffnd 5473 . . . 4  |-  ( ph  ->  N  Fn  om )
20 eqidd 2230 . . . 4  |-  ( x  =  i  ->  1o  =  1o )
21 1onn 6664 . . . . 5  |-  1o  e.  om
2221a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  1o  e.  om )
2321a1i 9 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  om )
2419, 20, 22, 23fnmptfvd 5738 . . 3  |-  ( ph  ->  ( N  =  ( i  e.  om  |->  1o )  <->  A. x  e.  om  ( N `  x )  =  1o ) )
2524dcbid 843 . 2  |-  ( ph  ->  (DECID  N  =  ( i  e.  om  |->  1o )  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
2618, 25mpbird 167 1  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    |-> cmpt 4144   omcom 4681   -->wf 5313   ` cfv 5317  (class class class)co 6000   1oc1o 6553   2oc2o 6554    ^m cmap 6793  ℕxnninf 7282  WOmnicwomni 7326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-nninf 7283  df-womni 7327
This theorem is referenced by:  nninfinfwlpo  7343
  Copyright terms: Public domain W3C validator