ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdcinf Unicode version

Theorem nninfdcinf 7246
Description: The Weak Limited Principle of Omniscience (WLPO) implies that it is decidable whether an element of ℕ equals the point at infinity. (Contributed by Jim Kingdon, 3-Dec-2024.)
Hypotheses
Ref Expression
nninfdcinf.w  |-  ( ph  ->  om  e. WOmni )
nninfdcinf.n  |-  ( ph  ->  N  e. )
Assertion
Ref Expression
nninfdcinf  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Distinct variable groups:    i, N    ph, i

Proof of Theorem nninfdcinf
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5560 . . . . . 6  |-  ( f  =  N  ->  (
f `  x )  =  ( N `  x ) )
21eqeq1d 2205 . . . . 5  |-  ( f  =  N  ->  (
( f `  x
)  =  1o  <->  ( N `  x )  =  1o ) )
32ralbidv 2497 . . . 4  |-  ( f  =  N  ->  ( A. x  e.  om  ( f `  x
)  =  1o  <->  A. x  e.  om  ( N `  x )  =  1o ) )
43dcbid 839 . . 3  |-  ( f  =  N  ->  (DECID  A. x  e.  om  (
f `  x )  =  1o  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
5 nninfdcinf.w . . . 4  |-  ( ph  ->  om  e. WOmni )
65elexd 2776 . . . . 5  |-  ( ph  ->  om  e.  _V )
7 iswomnimap 7241 . . . . 5  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ( om  e. WOmni  <->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
95, 8mpbid 147 . . 3  |-  ( ph  ->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o )
10 nninfdcinf.n . . . . 5  |-  ( ph  ->  N  e. )
11 nninff 7197 . . . . 5  |-  ( N  e.  ->  N : om --> 2o )
1210, 11syl 14 . . . 4  |-  ( ph  ->  N : om --> 2o )
13 2onn 6588 . . . . . 6  |-  2o  e.  om
1413elexi 2775 . . . . 5  |-  2o  e.  _V
15 omex 4630 . . . . 5  |-  om  e.  _V
1614, 15elmap 6745 . . . 4  |-  ( N  e.  ( 2o  ^m  om )  <->  N : om --> 2o )
1712, 16sylibr 134 . . 3  |-  ( ph  ->  N  e.  ( 2o 
^m  om ) )
184, 9, 17rspcdva 2873 . 2  |-  ( ph  -> DECID  A. x  e.  om  ( N `  x )  =  1o )
1912ffnd 5411 . . . 4  |-  ( ph  ->  N  Fn  om )
20 eqidd 2197 . . . 4  |-  ( x  =  i  ->  1o  =  1o )
21 1onn 6587 . . . . 5  |-  1o  e.  om
2221a1i 9 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  1o  e.  om )
2321a1i 9 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  om )
2419, 20, 22, 23fnmptfvd 5669 . . 3  |-  ( ph  ->  ( N  =  ( i  e.  om  |->  1o )  <->  A. x  e.  om  ( N `  x )  =  1o ) )
2524dcbid 839 . 2  |-  ( ph  ->  (DECID  N  =  ( i  e.  om  |->  1o )  <-> DECID  A. x  e.  om  ( N `  x )  =  1o ) )
2618, 25mpbird 167 1  |-  ( ph  -> DECID  N  =  ( i  e. 
om  |->  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    |-> cmpt 4095   omcom 4627   -->wf 5255   ` cfv 5259  (class class class)co 5925   1oc1o 6476   2oc2o 6477    ^m cmap 6716  ℕxnninf 7194  WOmnicwomni 7238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-map 6718  df-nninf 7195  df-womni 7239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator