| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfwlporlem | Unicode version | ||
| Description: Lemma for nninfwlpor 7302. The result. (Contributed by Jim Kingdon, 7-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfwlporlem.x |
|
| nninfwlporlem.y |
|
| nninfwlporlem.d |
|
| nninfwlporlem.w |
|
| Ref | Expression |
|---|---|
| nninfwlporlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 5598 |
. . . . . . 7
| |
| 2 | 1 | eqeq1d 2216 |
. . . . . 6
|
| 3 | 2 | ralbidv 2508 |
. . . . 5
|
| 4 | 3 | dcbid 840 |
. . . 4
|
| 5 | nninfwlporlem.w |
. . . . 5
| |
| 6 | omex 4659 |
. . . . . 6
| |
| 7 | iswomnimap 7294 |
. . . . . 6
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . 5
|
| 9 | 5, 8 | sylib 122 |
. . . 4
|
| 10 | 1lt2o 6551 |
. . . . . . . 8
| |
| 11 | 10 | a1i 9 |
. . . . . . 7
|
| 12 | 0lt2o 6550 |
. . . . . . . 8
| |
| 13 | 12 | a1i 9 |
. . . . . . 7
|
| 14 | 2ssom 6633 |
. . . . . . . . 9
| |
| 15 | nninfwlporlem.x |
. . . . . . . . . 10
| |
| 16 | 15 | ffvelcdmda 5738 |
. . . . . . . . 9
|
| 17 | 14, 16 | sselid 3199 |
. . . . . . . 8
|
| 18 | nninfwlporlem.y |
. . . . . . . . . 10
| |
| 19 | 18 | ffvelcdmda 5738 |
. . . . . . . . 9
|
| 20 | 14, 19 | sselid 3199 |
. . . . . . . 8
|
| 21 | nndceq 6608 |
. . . . . . . 8
| |
| 22 | 17, 20, 21 | syl2anc 411 |
. . . . . . 7
|
| 23 | 11, 13, 22 | ifcldcd 3617 |
. . . . . 6
|
| 24 | nninfwlporlem.d |
. . . . . 6
| |
| 25 | 23, 24 | fmptd 5757 |
. . . . 5
|
| 26 | 2onn 6630 |
. . . . . . 7
| |
| 27 | 26 | elexi 2789 |
. . . . . 6
|
| 28 | 27, 6 | elmap 6787 |
. . . . 5
|
| 29 | 25, 28 | sylibr 134 |
. . . 4
|
| 30 | 4, 9, 29 | rspcdva 2889 |
. . 3
|
| 31 | 25 | ffnd 5446 |
. . . . 5
|
| 32 | eqidd 2208 |
. . . . 5
| |
| 33 | 1onn 6629 |
. . . . . 6
| |
| 34 | 33 | a1i 9 |
. . . . 5
|
| 35 | 33 | a1i 9 |
. . . . 5
|
| 36 | 31, 32, 34, 35 | fnmptfvd 5707 |
. . . 4
|
| 37 | 36 | dcbid 840 |
. . 3
|
| 38 | 30, 37 | mpbird 167 |
. 2
|
| 39 | 15, 18, 24 | nninfwlporlemd 7300 |
. . 3
|
| 40 | 39 | dcbid 840 |
. 2
|
| 41 | 38, 40 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1o 6525 df-2o 6526 df-map 6760 df-womni 7292 |
| This theorem is referenced by: nninfwlpor 7302 |
| Copyright terms: Public domain | W3C validator |