| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nninfwlporlem | Unicode version | ||
| Description: Lemma for nninfwlpor 7240. The result. (Contributed by Jim Kingdon, 7-Dec-2024.) | 
| Ref | Expression | 
|---|---|
| nninfwlporlem.x | 
 | 
| nninfwlporlem.y | 
 | 
| nninfwlporlem.d | 
 | 
| nninfwlporlem.w | 
 | 
| Ref | Expression | 
|---|---|
| nninfwlporlem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq1 5557 | 
. . . . . . 7
 | |
| 2 | 1 | eqeq1d 2205 | 
. . . . . 6
 | 
| 3 | 2 | ralbidv 2497 | 
. . . . 5
 | 
| 4 | 3 | dcbid 839 | 
. . . 4
 | 
| 5 | nninfwlporlem.w | 
. . . . 5
 | |
| 6 | omex 4629 | 
. . . . . 6
 | |
| 7 | iswomnimap 7232 | 
. . . . . 6
 | |
| 8 | 6, 7 | ax-mp 5 | 
. . . . 5
 | 
| 9 | 5, 8 | sylib 122 | 
. . . 4
 | 
| 10 | 1lt2o 6500 | 
. . . . . . . 8
 | |
| 11 | 10 | a1i 9 | 
. . . . . . 7
 | 
| 12 | 0lt2o 6499 | 
. . . . . . . 8
 | |
| 13 | 12 | a1i 9 | 
. . . . . . 7
 | 
| 14 | 2ssom 6582 | 
. . . . . . . . 9
 | |
| 15 | nninfwlporlem.x | 
. . . . . . . . . 10
 | |
| 16 | 15 | ffvelcdmda 5697 | 
. . . . . . . . 9
 | 
| 17 | 14, 16 | sselid 3181 | 
. . . . . . . 8
 | 
| 18 | nninfwlporlem.y | 
. . . . . . . . . 10
 | |
| 19 | 18 | ffvelcdmda 5697 | 
. . . . . . . . 9
 | 
| 20 | 14, 19 | sselid 3181 | 
. . . . . . . 8
 | 
| 21 | nndceq 6557 | 
. . . . . . . 8
 | |
| 22 | 17, 20, 21 | syl2anc 411 | 
. . . . . . 7
 | 
| 23 | 11, 13, 22 | ifcldcd 3597 | 
. . . . . 6
 | 
| 24 | nninfwlporlem.d | 
. . . . . 6
 | |
| 25 | 23, 24 | fmptd 5716 | 
. . . . 5
 | 
| 26 | 2onn 6579 | 
. . . . . . 7
 | |
| 27 | 26 | elexi 2775 | 
. . . . . 6
 | 
| 28 | 27, 6 | elmap 6736 | 
. . . . 5
 | 
| 29 | 25, 28 | sylibr 134 | 
. . . 4
 | 
| 30 | 4, 9, 29 | rspcdva 2873 | 
. . 3
 | 
| 31 | 25 | ffnd 5408 | 
. . . . 5
 | 
| 32 | eqidd 2197 | 
. . . . 5
 | |
| 33 | 1onn 6578 | 
. . . . . 6
 | |
| 34 | 33 | a1i 9 | 
. . . . 5
 | 
| 35 | 33 | a1i 9 | 
. . . . 5
 | 
| 36 | 31, 32, 34, 35 | fnmptfvd 5666 | 
. . . 4
 | 
| 37 | 36 | dcbid 839 | 
. . 3
 | 
| 38 | 30, 37 | mpbird 167 | 
. 2
 | 
| 39 | 15, 18, 24 | nninfwlporlemd 7238 | 
. . 3
 | 
| 40 | 39 | dcbid 839 | 
. 2
 | 
| 41 | 38, 40 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1o 6474 df-2o 6475 df-map 6709 df-womni 7230 | 
| This theorem is referenced by: nninfwlpor 7240 | 
| Copyright terms: Public domain | W3C validator |