ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlem Unicode version

Theorem nninfwlporlem 7248
Description: Lemma for nninfwlpor 7249. The result. (Contributed by Jim Kingdon, 7-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x  |-  ( ph  ->  X : om --> 2o )
nninfwlporlem.y  |-  ( ph  ->  Y : om --> 2o )
nninfwlporlem.d  |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )
nninfwlporlem.w  |-  ( ph  ->  om  e. WOmni )
Assertion
Ref Expression
nninfwlporlem  |-  ( ph  -> DECID  X  =  Y )
Distinct variable groups:    D, i    ph, i    i, X    i, Y

Proof of Theorem nninfwlporlem
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5560 . . . . . . 7  |-  ( f  =  D  ->  (
f `  x )  =  ( D `  x ) )
21eqeq1d 2205 . . . . . 6  |-  ( f  =  D  ->  (
( f `  x
)  =  1o  <->  ( D `  x )  =  1o ) )
32ralbidv 2497 . . . . 5  |-  ( f  =  D  ->  ( A. x  e.  om  ( f `  x
)  =  1o  <->  A. x  e.  om  ( D `  x )  =  1o ) )
43dcbid 839 . . . 4  |-  ( f  =  D  ->  (DECID  A. x  e.  om  (
f `  x )  =  1o  <-> DECID  A. x  e.  om  ( D `  x )  =  1o ) )
5 nninfwlporlem.w . . . . 5  |-  ( ph  ->  om  e. WOmni )
6 omex 4630 . . . . . 6  |-  om  e.  _V
7 iswomnimap 7241 . . . . . 6  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o ) )
86, 7ax-mp 5 . . . . 5  |-  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o )
95, 8sylib 122 . . . 4  |-  ( ph  ->  A. f  e.  ( 2o  ^m  om )DECID  A. x  e.  om  (
f `  x )  =  1o )
10 1lt2o 6509 . . . . . . . 8  |-  1o  e.  2o
1110a1i 9 . . . . . . 7  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  2o )
12 0lt2o 6508 . . . . . . . 8  |-  (/)  e.  2o
1312a1i 9 . . . . . . 7  |-  ( (
ph  /\  i  e.  om )  ->  (/)  e.  2o )
14 2ssom 6591 . . . . . . . . 9  |-  2o  C_  om
15 nninfwlporlem.x . . . . . . . . . 10  |-  ( ph  ->  X : om --> 2o )
1615ffvelcdmda 5700 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  om )  ->  ( X `  i )  e.  2o )
1714, 16sselid 3182 . . . . . . . 8  |-  ( (
ph  /\  i  e.  om )  ->  ( X `  i )  e.  om )
18 nninfwlporlem.y . . . . . . . . . 10  |-  ( ph  ->  Y : om --> 2o )
1918ffvelcdmda 5700 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  om )  ->  ( Y `  i )  e.  2o )
2014, 19sselid 3182 . . . . . . . 8  |-  ( (
ph  /\  i  e.  om )  ->  ( Y `  i )  e.  om )
21 nndceq 6566 . . . . . . . 8  |-  ( ( ( X `  i
)  e.  om  /\  ( Y `  i )  e.  om )  -> DECID  ( X `  i )  =  ( Y `  i ) )
2217, 20, 21syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  i  e.  om )  -> DECID  ( X `  i
)  =  ( Y `
 i ) )
2311, 13, 22ifcldcd 3598 . . . . . 6  |-  ( (
ph  /\  i  e.  om )  ->  if (
( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) )  e.  2o )
24 nninfwlporlem.d . . . . . 6  |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )
2523, 24fmptd 5719 . . . . 5  |-  ( ph  ->  D : om --> 2o )
26 2onn 6588 . . . . . . 7  |-  2o  e.  om
2726elexi 2775 . . . . . 6  |-  2o  e.  _V
2827, 6elmap 6745 . . . . 5  |-  ( D  e.  ( 2o  ^m  om )  <->  D : om --> 2o )
2925, 28sylibr 134 . . . 4  |-  ( ph  ->  D  e.  ( 2o 
^m  om ) )
304, 9, 29rspcdva 2873 . . 3  |-  ( ph  -> DECID  A. x  e.  om  ( D `  x )  =  1o )
3125ffnd 5411 . . . . 5  |-  ( ph  ->  D  Fn  om )
32 eqidd 2197 . . . . 5  |-  ( x  =  i  ->  1o  =  1o )
33 1onn 6587 . . . . . 6  |-  1o  e.  om
3433a1i 9 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  1o  e.  om )
3533a1i 9 . . . . 5  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  om )
3631, 32, 34, 35fnmptfvd 5669 . . . 4  |-  ( ph  ->  ( D  =  ( i  e.  om  |->  1o )  <->  A. x  e.  om  ( D `  x )  =  1o ) )
3736dcbid 839 . . 3  |-  ( ph  ->  (DECID  D  =  ( i  e.  om  |->  1o )  <-> DECID  A. x  e.  om  ( D `  x )  =  1o ) )
3830, 37mpbird 167 . 2  |-  ( ph  -> DECID  D  =  ( i  e. 
om  |->  1o ) )
3915, 18, 24nninfwlporlemd 7247 . . 3  |-  ( ph  ->  ( X  =  Y  <-> 
D  =  ( i  e.  om  |->  1o ) ) )
4039dcbid 839 . 2  |-  ( ph  ->  (DECID  X  =  Y  <-> DECID  D  =  (
i  e.  om  |->  1o ) ) )
4138, 40mpbird 167 1  |-  ( ph  -> DECID  X  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   (/)c0 3451   ifcif 3562    |-> cmpt 4095   omcom 4627   -->wf 5255   ` cfv 5259  (class class class)co 5925   1oc1o 6476   2oc2o 6477    ^m cmap 6716  WOmnicwomni 7238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-map 6718  df-womni 7239
This theorem is referenced by:  nninfwlpor  7249
  Copyright terms: Public domain W3C validator