| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqex | Unicode version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10559 |
. 2
| |
| 2 | frecex 6461 |
. . 3
| |
| 3 | 2 | rnex 4934 |
. 2
|
| 4 | 1, 3 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-recs 6372 df-frec 6458 df-seqfrec 10559 |
| This theorem is referenced by: seq3shft 11022 clim2ser 11521 clim2ser2 11522 isermulc2 11524 iser3shft 11530 fsum3cvg 11562 sumrbdc 11563 isumclim3 11607 sumnul 11608 isumadd 11615 trireciplem 11684 geolim 11695 geolim2 11696 geo2lim 11700 geoisum1c 11704 mertensabs 11721 clim2prod 11723 clim2divap 11724 ntrivcvgap 11732 fproddccvg 11756 prodrbdclem2 11757 fprodntrivap 11768 efcj 11857 eftlub 11874 eflegeo 11885 nninfdc 12697 gsumfzval 13095 gsumval2 13101 mulgfvalg 13329 trilpolemisumle 15795 trilpolemeq1 15797 |
| Copyright terms: Public domain | W3C validator |