| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqex | Unicode version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10593 |
. 2
| |
| 2 | frecex 6480 |
. . 3
| |
| 3 | 2 | rnex 4946 |
. 2
|
| 4 | 1, 3 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-recs 6391 df-frec 6477 df-seqfrec 10593 |
| This theorem is referenced by: seq3shft 11149 clim2ser 11648 clim2ser2 11649 isermulc2 11651 iser3shft 11657 fsum3cvg 11689 sumrbdc 11690 isumclim3 11734 sumnul 11735 isumadd 11742 trireciplem 11811 geolim 11822 geolim2 11823 geo2lim 11827 geoisum1c 11831 mertensabs 11848 clim2prod 11850 clim2divap 11851 ntrivcvgap 11859 fproddccvg 11883 prodrbdclem2 11884 fprodntrivap 11895 efcj 11984 eftlub 12001 eflegeo 12012 nninfdc 12824 gsumfzval 13223 gsumval2 13229 mulgfvalg 13457 trilpolemisumle 15977 trilpolemeq1 15979 |
| Copyright terms: Public domain | W3C validator |