ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqex Unicode version

Theorem seqex 10480
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqex  |-  seq M
(  .+  ,  F
)  e.  _V

Proof of Theorem seqex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10479 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
2 frecex 6420 . . 3  |- frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  e.  _V
32rnex 4912 . 2  |-  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  e.  _V
41, 3eqeltri 2262 1  |-  seq M
(  .+  ,  F
)  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   _Vcvv 2752   <.cop 3610   ran crn 4645   ` cfv 5235  (class class class)co 5897    e. cmpo 5899  freccfrec 6416   1c1 7843    + caddc 7845   ZZ>=cuz 9559    seqcseq 10478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-recs 6331  df-frec 6417  df-seqfrec 10479
This theorem is referenced by:  seq3shft  10882  clim2ser  11380  clim2ser2  11381  isermulc2  11383  iser3shft  11389  fsum3cvg  11421  sumrbdc  11422  isumclim3  11466  sumnul  11467  isumadd  11474  trireciplem  11543  geolim  11554  geolim2  11555  geo2lim  11559  geoisum1c  11563  mertensabs  11580  clim2prod  11582  clim2divap  11583  ntrivcvgap  11591  fproddccvg  11615  prodrbdclem2  11616  fprodntrivap  11627  efcj  11716  eftlub  11733  eflegeo  11744  nninfdc  12507  gsumval2  12875  mulgfvalg  13078  trilpolemisumle  15265  trilpolemeq1  15267
  Copyright terms: Public domain W3C validator