ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqex Unicode version

Theorem seqex 10396
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqex  |-  seq M
(  .+  ,  F
)  e.  _V

Proof of Theorem seqex
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10395 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
2 frecex 6371 . . 3  |- frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. )  e.  _V
32rnex 4876 . 2  |-  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  e.  _V
41, 3eqeltri 2243 1  |-  seq M
(  .+  ,  F
)  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   _Vcvv 2730   <.cop 3584   ran crn 4610   ` cfv 5196  (class class class)co 5851    e. cmpo 5853  freccfrec 6367   1c1 7768    + caddc 7770   ZZ>=cuz 9480    seqcseq 10394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-recs 6282  df-frec 6368  df-seqfrec 10395
This theorem is referenced by:  seq3shft  10795  clim2ser  11293  clim2ser2  11294  isermulc2  11296  iser3shft  11302  fsum3cvg  11334  sumrbdc  11335  isumclim3  11379  sumnul  11380  isumadd  11387  trireciplem  11456  geolim  11467  geolim2  11468  geo2lim  11472  geoisum1c  11476  mertensabs  11493  clim2prod  11495  clim2divap  11496  ntrivcvgap  11504  fproddccvg  11528  prodrbdclem2  11529  fprodntrivap  11540  efcj  11629  eftlub  11646  eflegeo  11657  nninfdc  12401  trilpolemisumle  14035  trilpolemeq1  14037
  Copyright terms: Public domain W3C validator