| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqex | Unicode version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10670 |
. 2
| |
| 2 | frecex 6540 |
. . 3
| |
| 3 | 2 | rnex 4992 |
. 2
|
| 4 | 1, 3 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-recs 6451 df-frec 6537 df-seqfrec 10670 |
| This theorem is referenced by: seq3shft 11349 clim2ser 11848 clim2ser2 11849 isermulc2 11851 iser3shft 11857 fsum3cvg 11889 sumrbdc 11890 isumclim3 11934 sumnul 11935 isumadd 11942 trireciplem 12011 geolim 12022 geolim2 12023 geo2lim 12027 geoisum1c 12031 mertensabs 12048 clim2prod 12050 clim2divap 12051 ntrivcvgap 12059 fproddccvg 12083 prodrbdclem2 12084 fprodntrivap 12095 efcj 12184 eftlub 12201 eflegeo 12212 nninfdc 13024 gsumfzval 13424 gsumval2 13430 mulgfvalg 13658 trilpolemisumle 16406 trilpolemeq1 16408 |
| Copyright terms: Public domain | W3C validator |