| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqex | Unicode version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10630 |
. 2
| |
| 2 | frecex 6503 |
. . 3
| |
| 3 | 2 | rnex 4965 |
. 2
|
| 4 | 1, 3 | eqeltri 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-recs 6414 df-frec 6500 df-seqfrec 10630 |
| This theorem is referenced by: seq3shft 11264 clim2ser 11763 clim2ser2 11764 isermulc2 11766 iser3shft 11772 fsum3cvg 11804 sumrbdc 11805 isumclim3 11849 sumnul 11850 isumadd 11857 trireciplem 11926 geolim 11937 geolim2 11938 geo2lim 11942 geoisum1c 11946 mertensabs 11963 clim2prod 11965 clim2divap 11966 ntrivcvgap 11974 fproddccvg 11998 prodrbdclem2 11999 fprodntrivap 12010 efcj 12099 eftlub 12116 eflegeo 12127 nninfdc 12939 gsumfzval 13338 gsumval2 13344 mulgfvalg 13572 trilpolemisumle 16179 trilpolemeq1 16181 |
| Copyright terms: Public domain | W3C validator |