| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqex | Unicode version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10595 |
. 2
| |
| 2 | frecex 6482 |
. . 3
| |
| 3 | 2 | rnex 4947 |
. 2
|
| 4 | 1, 3 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-recs 6393 df-frec 6479 df-seqfrec 10595 |
| This theorem is referenced by: seq3shft 11182 clim2ser 11681 clim2ser2 11682 isermulc2 11684 iser3shft 11690 fsum3cvg 11722 sumrbdc 11723 isumclim3 11767 sumnul 11768 isumadd 11775 trireciplem 11844 geolim 11855 geolim2 11856 geo2lim 11860 geoisum1c 11864 mertensabs 11881 clim2prod 11883 clim2divap 11884 ntrivcvgap 11892 fproddccvg 11916 prodrbdclem2 11917 fprodntrivap 11928 efcj 12017 eftlub 12034 eflegeo 12045 nninfdc 12857 gsumfzval 13256 gsumval2 13262 mulgfvalg 13490 trilpolemisumle 16014 trilpolemeq1 16016 |
| Copyright terms: Public domain | W3C validator |