| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seqex | Unicode version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| seqex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-seqfrec 10540 | 
. 2
 | |
| 2 | frecex 6452 | 
. . 3
 | |
| 3 | 2 | rnex 4933 | 
. 2
 | 
| 4 | 1, 3 | eqeltri 2269 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-recs 6363 df-frec 6449 df-seqfrec 10540 | 
| This theorem is referenced by: seq3shft 11003 clim2ser 11502 clim2ser2 11503 isermulc2 11505 iser3shft 11511 fsum3cvg 11543 sumrbdc 11544 isumclim3 11588 sumnul 11589 isumadd 11596 trireciplem 11665 geolim 11676 geolim2 11677 geo2lim 11681 geoisum1c 11685 mertensabs 11702 clim2prod 11704 clim2divap 11705 ntrivcvgap 11713 fproddccvg 11737 prodrbdclem2 11738 fprodntrivap 11749 efcj 11838 eftlub 11855 eflegeo 11866 nninfdc 12670 gsumfzval 13034 gsumval2 13040 mulgfvalg 13251 trilpolemisumle 15682 trilpolemeq1 15684 | 
| Copyright terms: Public domain | W3C validator |