| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqex | Unicode version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seqfrec 10557 |
. 2
| |
| 2 | frecex 6461 |
. . 3
| |
| 3 | 2 | rnex 4934 |
. 2
|
| 4 | 1, 3 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-recs 6372 df-frec 6458 df-seqfrec 10557 |
| This theorem is referenced by: seq3shft 11020 clim2ser 11519 clim2ser2 11520 isermulc2 11522 iser3shft 11528 fsum3cvg 11560 sumrbdc 11561 isumclim3 11605 sumnul 11606 isumadd 11613 trireciplem 11682 geolim 11693 geolim2 11694 geo2lim 11698 geoisum1c 11702 mertensabs 11719 clim2prod 11721 clim2divap 11722 ntrivcvgap 11730 fproddccvg 11754 prodrbdclem2 11755 fprodntrivap 11766 efcj 11855 eftlub 11872 eflegeo 11883 nninfdc 12695 gsumfzval 13093 gsumval2 13099 mulgfvalg 13327 trilpolemisumle 15769 trilpolemeq1 15771 |
| Copyright terms: Public domain | W3C validator |