ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundif GIF version

Theorem fundif 5327
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
fundif (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem fundif
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldif 4803 . . 3 (Rel 𝐹 → Rel (𝐹𝐴))
2 brdif 4105 . . . . . . 7 (𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦))
3 brdif 4105 . . . . . . 7 (𝑥(𝐹𝐴)𝑧 ↔ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧))
4 pm2.27 40 . . . . . . . 8 ((𝑥𝐹𝑦𝑥𝐹𝑧) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
54ad2ant2r 509 . . . . . . 7 (((𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦) ∧ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
62, 3, 5syl2anb 291 . . . . . 6 ((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
76com12 30 . . . . 5 (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
87alimi 1479 . . . 4 (∀𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
982alimi 1480 . . 3 (∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
101, 9anim12i 338 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)) → (Rel (𝐹𝐴) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧)))
11 dffun2 5290 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
12 dffun2 5290 . 2 (Fun (𝐹𝐴) ↔ (Rel (𝐹𝐴) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧)))
1310, 11, 123imtr4i 201 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1371  cdif 3167   class class class wbr 4051  Rel wrel 4688  Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-rel 4690  df-cnv 4691  df-co 4692  df-fun 5282
This theorem is referenced by:  fundm2domnop  11013  fun2dmnop  11015  edgstruct  15735
  Copyright terms: Public domain W3C validator