| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fundif | GIF version | ||
| Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| fundif | ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldif 4794 | . . 3 ⊢ (Rel 𝐹 → Rel (𝐹 ∖ 𝐴)) | |
| 2 | brdif 4096 | . . . . . . 7 ⊢ (𝑥(𝐹 ∖ 𝐴)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦)) | |
| 3 | brdif 4096 | . . . . . . 7 ⊢ (𝑥(𝐹 ∖ 𝐴)𝑧 ↔ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) | |
| 4 | pm2.27 40 | . . . . . . . 8 ⊢ ((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) | |
| 5 | 4 | ad2ant2r 509 | . . . . . . 7 ⊢ (((𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦) ∧ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
| 6 | 2, 3, 5 | syl2anb 291 | . . . . . 6 ⊢ ((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧)) |
| 7 | 6 | com12 30 | . . . . 5 ⊢ (((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
| 8 | 7 | alimi 1477 | . . . 4 ⊢ (∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
| 9 | 8 | 2alimi 1478 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧)) |
| 10 | 1, 9 | anim12i 338 | . 2 ⊢ ((Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧)) → (Rel (𝐹 ∖ 𝐴) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧))) |
| 11 | dffun2 5280 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∀𝑦∀𝑧((𝑥𝐹𝑦 ∧ 𝑥𝐹𝑧) → 𝑦 = 𝑧))) | |
| 12 | dffun2 5280 | . 2 ⊢ (Fun (𝐹 ∖ 𝐴) ↔ (Rel (𝐹 ∖ 𝐴) ∧ ∀𝑥∀𝑦∀𝑧((𝑥(𝐹 ∖ 𝐴)𝑦 ∧ 𝑥(𝐹 ∖ 𝐴)𝑧) → 𝑦 = 𝑧))) | |
| 13 | 10, 11, 12 | 3imtr4i 201 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∖ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1370 ∖ cdif 3162 class class class wbr 4043 Rel wrel 4679 Fun wfun 5264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-id 4339 df-rel 4681 df-cnv 4682 df-co 4683 df-fun 5272 |
| This theorem is referenced by: fundm2domnop 10989 fun2dmnop 10991 |
| Copyright terms: Public domain | W3C validator |