ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fundif GIF version

Theorem fundif 5317
Description: A function with removed elements is still a function. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
fundif (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem fundif
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldif 4794 . . 3 (Rel 𝐹 → Rel (𝐹𝐴))
2 brdif 4096 . . . . . . 7 (𝑥(𝐹𝐴)𝑦 ↔ (𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦))
3 brdif 4096 . . . . . . 7 (𝑥(𝐹𝐴)𝑧 ↔ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧))
4 pm2.27 40 . . . . . . . 8 ((𝑥𝐹𝑦𝑥𝐹𝑧) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
54ad2ant2r 509 . . . . . . 7 (((𝑥𝐹𝑦 ∧ ¬ 𝑥𝐴𝑦) ∧ (𝑥𝐹𝑧 ∧ ¬ 𝑥𝐴𝑧)) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
62, 3, 5syl2anb 291 . . . . . 6 ((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → 𝑦 = 𝑧))
76com12 30 . . . . 5 (((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
87alimi 1477 . . . 4 (∀𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
982alimi 1478 . . 3 (∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧) → ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧))
101, 9anim12i 338 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)) → (Rel (𝐹𝐴) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧)))
11 dffun2 5280 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((𝑥𝐹𝑦𝑥𝐹𝑧) → 𝑦 = 𝑧)))
12 dffun2 5280 . 2 (Fun (𝐹𝐴) ↔ (Rel (𝐹𝐴) ∧ ∀𝑥𝑦𝑧((𝑥(𝐹𝐴)𝑦𝑥(𝐹𝐴)𝑧) → 𝑦 = 𝑧)))
1310, 11, 123imtr4i 201 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wal 1370  cdif 3162   class class class wbr 4043  Rel wrel 4679  Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by:  fundm2domnop  10989  fun2dmnop  10991
  Copyright terms: Public domain W3C validator