ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplactf1o Unicode version

Theorem grplactf1o 13353
Description: The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
grplact.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grplactf1o  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  A
) : X -1-1-onto-> X )
Distinct variable groups:    g, a, A    G, a, g    .+ , a,
g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactf1o
StepHypRef Expression
1 grplact.1 . . 3  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
2 grplact.2 . . 3  |-  X  =  ( Base `  G
)
3 grplact.3 . . 3  |-  .+  =  ( +g  `  G )
4 eqid 2204 . . 3  |-  ( invg `  G )  =  ( invg `  G )
51, 2, 3, 4grplactcnv 13352 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( ( invg `  G
) `  A )
) ) )
65simpld 112 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  A
) : X -1-1-onto-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175    |-> cmpt 4104   `'ccnv 4672   -1-1-onto->wf1o 5267   ` cfv 5268  (class class class)co 5934   Basecbs 12751   +g cplusg 12828   Grpcgrp 13250   invgcminusg 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254
This theorem is referenced by:  eqgen  13481
  Copyright terms: Public domain W3C validator