ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idcncf Unicode version

Theorem idcncf 14921
Description: The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Moved into main set.mm as cncfmptid 14917 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypothesis
Ref Expression
idcncf.1  |-  F  =  ( x  e.  CC  |->  x )
Assertion
Ref Expression
idcncf  |-  F  e.  ( CC -cn-> CC )

Proof of Theorem idcncf
StepHypRef Expression
1 idcncf.1 . 2  |-  F  =  ( x  e.  CC  |->  x )
2 ssid 3204 . . 3  |-  CC  C_  CC
3 cncfmptid 14917 . . 3  |-  ( ( CC  C_  CC  /\  CC  C_  CC )  ->  (
x  e.  CC  |->  x )  e.  ( CC
-cn-> CC ) )
42, 2, 3mp2an 426 . 2  |-  ( x  e.  CC  |->  x )  e.  ( CC -cn-> CC )
51, 4eqeltri 2269 1  |-  F  e.  ( CC -cn-> CC )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167    C_ wss 3157    |-> cmpt 4095  (class class class)co 5925   CCcc 7894   -cn->ccncf 14890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718  df-cncf 14891
This theorem is referenced by:  sub1cncf  14922  sub2cncf  14923
  Copyright terms: Public domain W3C validator