| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idcncf | GIF version | ||
| Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Moved into main set.mm as cncfmptid 14917 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| idcncf.1 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝑥) |
| Ref | Expression |
|---|---|
| idcncf | ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idcncf.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝑥) | |
| 2 | ssid 3204 | . . 3 ⊢ ℂ ⊆ ℂ | |
| 3 | cncfmptid 14917 | . . 3 ⊢ ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) | |
| 4 | 2, 2, 3 | mp2an 426 | . 2 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ↦ cmpt 4095 (class class class)co 5925 ℂcc 7894 –cn→ccncf 14890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-map 6718 df-cncf 14891 |
| This theorem is referenced by: sub1cncf 14922 sub2cncf 14923 |
| Copyright terms: Public domain | W3C validator |