| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > idcncf | GIF version | ||
| Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Moved into main set.mm as cncfmptid 15236 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| idcncf.1 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝑥) |
| Ref | Expression |
|---|---|
| idcncf | ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idcncf.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝑥) | |
| 2 | ssid 3224 | . . 3 ⊢ ℂ ⊆ ℂ | |
| 3 | cncfmptid 15236 | . . 3 ⊢ ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) | |
| 4 | 2, 2, 3 | mp2an 426 | . 2 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
| 5 | 1, 4 | eqeltri 2282 | 1 ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 ↦ cmpt 4124 (class class class)co 5974 ℂcc 7965 –cn→ccncf 15209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-map 6767 df-cncf 15210 |
| This theorem is referenced by: sub1cncf 15241 sub2cncf 15242 |
| Copyright terms: Public domain | W3C validator |