![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > idcncf | GIF version |
Description: The identity function is a continuous function on ℂ. (Contributed by Jeff Madsen, 11-Jun-2010.) (Moved into main set.mm as cncfmptid 14751 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
idcncf.1 | ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝑥) |
Ref | Expression |
---|---|
idcncf | ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idcncf.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝑥) | |
2 | ssid 3199 | . . 3 ⊢ ℂ ⊆ ℂ | |
3 | cncfmptid 14751 | . . 3 ⊢ ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)) | |
4 | 2, 2, 3 | mp2an 426 | . 2 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ) |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 𝐹 ∈ (ℂ–cn→ℂ) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ↦ cmpt 4090 (class class class)co 5918 ℂcc 7870 –cn→ccncf 14725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-map 6704 df-cncf 14726 |
This theorem is referenced by: sub1cncf 14756 sub2cncf 14757 |
Copyright terms: Public domain | W3C validator |