ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooval Unicode version

Theorem iooval 9907
Description: Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iooval  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) } )
Distinct variable groups:    x, A    x, B

Proof of Theorem iooval
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 9891 . 2  |-  (,)  =  ( y  e.  RR* ,  z  e.  RR*  |->  { x  e.  RR*  |  ( y  <  x  /\  x  <  z ) } )
21ixxval 9895 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {crab 2459   class class class wbr 4003  (class class class)co 5874   RR*cxr 7990    < clt 7991   (,)cioo 9887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ioo 9891
This theorem is referenced by:  iooidg  9908  iooval2  9914  ioof  9970  ioo0  10259  iooinsup  11284
  Copyright terms: Public domain W3C validator