ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooidg Unicode version

Theorem iooidg 9909
Description: An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.)
Assertion
Ref Expression
iooidg  |-  ( A  e.  RR*  ->  ( A (,) A )  =  (/) )

Proof of Theorem iooidg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iooval 9908 . . 3  |-  ( ( A  e.  RR*  /\  A  e.  RR* )  ->  ( A (,) A )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  A ) } )
21anidms 397 . 2  |-  ( A  e.  RR*  ->  ( A (,) A )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  A ) } )
3 xrltnsym2 9794 . . . 4  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  -.  ( A  <  x  /\  x  <  A ) )
43ralrimiva 2550 . . 3  |-  ( A  e.  RR*  ->  A. x  e.  RR*  -.  ( A  <  x  /\  x  <  A ) )
5 rabeq0 3453 . . 3  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  A ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <  x  /\  x  <  A ) )
64, 5sylibr 134 . 2  |-  ( A  e.  RR*  ->  { x  e.  RR*  |  ( A  <  x  /\  x  <  A ) }  =  (/) )
72, 6eqtrd 2210 1  |-  ( A  e.  RR*  ->  ( A (,) A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459   (/)c0 3423   class class class wbr 4004  (class class class)co 5875   RR*cxr 7991    < clt 7992   (,)cioo 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-pre-ltirr 7923  ax-pre-lttrn 7925
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-ioo 9892
This theorem is referenced by:  blssioo  14048
  Copyright terms: Public domain W3C validator