ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooidg Unicode version

Theorem iooidg 10105
Description: An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.)
Assertion
Ref Expression
iooidg  |-  ( A  e.  RR*  ->  ( A (,) A )  =  (/) )

Proof of Theorem iooidg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iooval 10104 . . 3  |-  ( ( A  e.  RR*  /\  A  e.  RR* )  ->  ( A (,) A )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  A ) } )
21anidms 397 . 2  |-  ( A  e.  RR*  ->  ( A (,) A )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  A ) } )
3 xrltnsym2 9990 . . . 4  |-  ( ( A  e.  RR*  /\  x  e.  RR* )  ->  -.  ( A  <  x  /\  x  <  A ) )
43ralrimiva 2603 . . 3  |-  ( A  e.  RR*  ->  A. x  e.  RR*  -.  ( A  <  x  /\  x  <  A ) )
5 rabeq0 3521 . . 3  |-  ( { x  e.  RR*  |  ( A  <  x  /\  x  <  A ) }  =  (/)  <->  A. x  e.  RR*  -.  ( A  <  x  /\  x  <  A ) )
64, 5sylibr 134 . 2  |-  ( A  e.  RR*  ->  { x  e.  RR*  |  ( A  <  x  /\  x  <  A ) }  =  (/) )
72, 6eqtrd 2262 1  |-  ( A  e.  RR*  ->  ( A (,) A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   (/)c0 3491   class class class wbr 4083  (class class class)co 6001   RR*cxr 8180    < clt 8181   (,)cioo 10084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111  ax-pre-lttrn 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-ioo 10088
This theorem is referenced by:  blssioo  15227
  Copyright terms: Public domain W3C validator