ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpi Unicode version

Theorem isgrpi 13274
Description: Properties that determine a group.  N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 3-Sep-2011.)
Hypotheses
Ref Expression
isgrpi.b  |-  B  =  ( Base `  G
)
isgrpi.p  |-  .+  =  ( +g  `  G )
isgrpi.c  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
isgrpi.a  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpi.z  |-  .0.  e.  B
isgrpi.i  |-  ( x  e.  B  ->  (  .0.  .+  x )  =  x )
isgrpi.n  |-  ( x  e.  B  ->  N  e.  B )
isgrpi.j  |-  ( x  e.  B  ->  ( N  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpi  |-  G  e. 
Grp
Distinct variable groups:    x, y, z, B    x, G, y, z    y, N    x,  .+ , y, z    x,  .0. , y, z
Allowed substitution hints:    N( x, z)

Proof of Theorem isgrpi
StepHypRef Expression
1 isgrpi.b . . . 4  |-  B  =  ( Base `  G
)
21a1i 9 . . 3  |-  ( T. 
->  B  =  ( Base `  G ) )
3 isgrpi.p . . . 4  |-  .+  =  ( +g  `  G )
43a1i 9 . . 3  |-  ( T. 
->  .+  =  ( +g  `  G ) )
5 isgrpi.c . . . 4  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
653adant1 1017 . . 3  |-  ( ( T.  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
7 isgrpi.a . . . 4  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
87adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
9 isgrpi.z . . . 4  |-  .0.  e.  B
109a1i 9 . . 3  |-  ( T. 
->  .0.  e.  B )
11 isgrpi.i . . . 4  |-  ( x  e.  B  ->  (  .0.  .+  x )  =  x )
1211adantl 277 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
13 isgrpi.n . . . 4  |-  ( x  e.  B  ->  N  e.  B )
1413adantl 277 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  N  e.  B )
15 isgrpi.j . . . 4  |-  ( x  e.  B  ->  ( N  .+  x )  =  .0.  )
1615adantl 277 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )
172, 4, 6, 8, 10, 12, 14, 16isgrpd 13273 . 2  |-  ( T. 
->  G  e.  Grp )
1817mptru 1381 1  |-  G  e. 
Grp
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372   T. wtru 1373    e. wcel 2175   ` cfv 5268  (class class class)co 5934   Basecbs 12751   +g cplusg 12828   Grpcgrp 13250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-riota 5889  df-ov 5937  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253
This theorem is referenced by:  cncrng  14249
  Copyright terms: Public domain W3C validator