ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpi Unicode version

Theorem isgrpi 13552
Description: Properties that determine a group.  N (negative) is normally dependent on  x i.e. read it as  N ( x ). (Contributed by NM, 3-Sep-2011.)
Hypotheses
Ref Expression
isgrpi.b  |-  B  =  ( Base `  G
)
isgrpi.p  |-  .+  =  ( +g  `  G )
isgrpi.c  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
isgrpi.a  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpi.z  |-  .0.  e.  B
isgrpi.i  |-  ( x  e.  B  ->  (  .0.  .+  x )  =  x )
isgrpi.n  |-  ( x  e.  B  ->  N  e.  B )
isgrpi.j  |-  ( x  e.  B  ->  ( N  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpi  |-  G  e. 
Grp
Distinct variable groups:    x, y, z, B    x, G, y, z    y, N    x,  .+ , y, z    x,  .0. , y, z
Allowed substitution hints:    N( x, z)

Proof of Theorem isgrpi
StepHypRef Expression
1 isgrpi.b . . . 4  |-  B  =  ( Base `  G
)
21a1i 9 . . 3  |-  ( T. 
->  B  =  ( Base `  G ) )
3 isgrpi.p . . . 4  |-  .+  =  ( +g  `  G )
43a1i 9 . . 3  |-  ( T. 
->  .+  =  ( +g  `  G ) )
5 isgrpi.c . . . 4  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
653adant1 1039 . . 3  |-  ( ( T.  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
7 isgrpi.a . . . 4  |-  ( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
87adantl 277 . . 3  |-  ( ( T.  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
9 isgrpi.z . . . 4  |-  .0.  e.  B
109a1i 9 . . 3  |-  ( T. 
->  .0.  e.  B )
11 isgrpi.i . . . 4  |-  ( x  e.  B  ->  (  .0.  .+  x )  =  x )
1211adantl 277 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
13 isgrpi.n . . . 4  |-  ( x  e.  B  ->  N  e.  B )
1413adantl 277 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  N  e.  B )
15 isgrpi.j . . . 4  |-  ( x  e.  B  ->  ( N  .+  x )  =  .0.  )
1615adantl 277 . . 3  |-  ( ( T.  /\  x  e.  B )  ->  ( N  .+  x )  =  .0.  )
172, 4, 6, 8, 10, 12, 14, 16isgrpd 13551 . 2  |-  ( T. 
->  G  e.  Grp )
1817mptru 1404 1  |-  G  e. 
Grp
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395   T. wtru 1396    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   Grpcgrp 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531
This theorem is referenced by:  cncrng  14527
  Copyright terms: Public domain W3C validator