ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpi GIF version

Theorem isgrpi 13523
Description: Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.)
Hypotheses
Ref Expression
isgrpi.b 𝐵 = (Base‘𝐺)
isgrpi.p + = (+g𝐺)
isgrpi.c ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
isgrpi.a ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
isgrpi.z 0𝐵
isgrpi.i (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)
isgrpi.n (𝑥𝐵𝑁𝐵)
isgrpi.j (𝑥𝐵 → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpi 𝐺 ∈ Grp
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐺,𝑦,𝑧   𝑦,𝑁   𝑥, + ,𝑦,𝑧   𝑥, 0 ,𝑦,𝑧
Allowed substitution hints:   𝑁(𝑥,𝑧)

Proof of Theorem isgrpi
StepHypRef Expression
1 isgrpi.b . . . 4 𝐵 = (Base‘𝐺)
21a1i 9 . . 3 (⊤ → 𝐵 = (Base‘𝐺))
3 isgrpi.p . . . 4 + = (+g𝐺)
43a1i 9 . . 3 (⊤ → + = (+g𝐺))
5 isgrpi.c . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
653adant1 1020 . . 3 ((⊤ ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
7 isgrpi.a . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
87adantl 277 . . 3 ((⊤ ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9 isgrpi.z . . . 4 0𝐵
109a1i 9 . . 3 (⊤ → 0𝐵)
11 isgrpi.i . . . 4 (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)
1211adantl 277 . . 3 ((⊤ ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
13 isgrpi.n . . . 4 (𝑥𝐵𝑁𝐵)
1413adantl 277 . . 3 ((⊤ ∧ 𝑥𝐵) → 𝑁𝐵)
15 isgrpi.j . . . 4 (𝑥𝐵 → (𝑁 + 𝑥) = 0 )
1615adantl 277 . . 3 ((⊤ ∧ 𝑥𝐵) → (𝑁 + 𝑥) = 0 )
172, 4, 6, 8, 10, 12, 14, 16isgrpd 13522 . 2 (⊤ → 𝐺 ∈ Grp)
1817mptru 1384 1 𝐺 ∈ Grp
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wtru 1376  wcel 2180  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  Grpcgrp 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-2 9137  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502
This theorem is referenced by:  cncrng  14498
  Copyright terms: Public domain W3C validator