| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isgrpi | GIF version | ||
| Description: Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.) |
| Ref | Expression |
|---|---|
| isgrpi.b | ⊢ 𝐵 = (Base‘𝐺) |
| isgrpi.p | ⊢ + = (+g‘𝐺) |
| isgrpi.c | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| isgrpi.a | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| isgrpi.z | ⊢ 0 ∈ 𝐵 |
| isgrpi.i | ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) |
| isgrpi.n | ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) |
| isgrpi.j | ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) |
| Ref | Expression |
|---|---|
| isgrpi | ⊢ 𝐺 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = (Base‘𝐺)) |
| 3 | isgrpi.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → + = (+g‘𝐺)) |
| 5 | isgrpi.c | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
| 6 | 5 | 3adant1 1020 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
| 7 | isgrpi.a | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 8 | 7 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 9 | isgrpi.z | . . . 4 ⊢ 0 ∈ 𝐵 | |
| 10 | 9 | a1i 9 | . . 3 ⊢ (⊤ → 0 ∈ 𝐵) |
| 11 | isgrpi.i | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ( 0 + 𝑥) = 𝑥) | |
| 12 | 11 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
| 13 | isgrpi.n | . . . 4 ⊢ (𝑥 ∈ 𝐵 → 𝑁 ∈ 𝐵) | |
| 14 | 13 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ 𝐵) |
| 15 | isgrpi.j | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝑁 + 𝑥) = 0 ) | |
| 16 | 15 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐵) → (𝑁 + 𝑥) = 0 ) |
| 17 | 2, 4, 6, 8, 10, 12, 14, 16 | isgrpd 13522 | . 2 ⊢ (⊤ → 𝐺 ∈ Grp) |
| 18 | 17 | mptru 1384 | 1 ⊢ 𝐺 ∈ Grp |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 = wceq 1375 ⊤wtru 1376 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 Grpcgrp 13499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 |
| This theorem is referenced by: cncrng 14498 |
| Copyright terms: Public domain | W3C validator |