| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemloc | Unicode version | ||
| Description: Lemma for ivthinc 15148. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivth.9 |
|
| ivthinc.i |
|
| ivthinclem.l |
|
| ivthinclem.r |
|
| Ref | Expression |
|---|---|
| ivthinclemloc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | breq2 4049 |
. . . . . . . 8
| |
| 3 | fveq2 5578 |
. . . . . . . . 9
| |
| 4 | 3 | breq2d 4057 |
. . . . . . . 8
|
| 5 | 2, 4 | imbi12d 234 |
. . . . . . 7
|
| 6 | breq1 4048 |
. . . . . . . . . 10
| |
| 7 | fveq2 5578 |
. . . . . . . . . . 11
| |
| 8 | 7 | breq1d 4055 |
. . . . . . . . . 10
|
| 9 | 6, 8 | imbi12d 234 |
. . . . . . . . 9
|
| 10 | 9 | ralbidv 2506 |
. . . . . . . 8
|
| 11 | ivthinc.i |
. . . . . . . . . . . 12
| |
| 12 | 11 | expr 375 |
. . . . . . . . . . 11
|
| 13 | 12 | ralrimiva 2579 |
. . . . . . . . . 10
|
| 14 | 13 | ralrimiva 2579 |
. . . . . . . . 9
|
| 15 | 14 | ad2antrr 488 |
. . . . . . . 8
|
| 16 | simplrl 535 |
. . . . . . . 8
| |
| 17 | 10, 15, 16 | rspcdva 2882 |
. . . . . . 7
|
| 18 | simplrr 536 |
. . . . . . 7
| |
| 19 | 5, 17, 18 | rspcdva 2882 |
. . . . . 6
|
| 20 | 1, 19 | mpd 13 |
. . . . 5
|
| 21 | 7 | eleq1d 2274 |
. . . . . . 7
|
| 22 | ivth.8 |
. . . . . . . . 9
| |
| 23 | 22 | ralrimiva 2579 |
. . . . . . . 8
|
| 24 | 23 | ad2antrr 488 |
. . . . . . 7
|
| 25 | 21, 24, 16 | rspcdva 2882 |
. . . . . 6
|
| 26 | fveq2 5578 |
. . . . . . . 8
| |
| 27 | 26 | eleq1d 2274 |
. . . . . . 7
|
| 28 | 27, 24, 18 | rspcdva 2882 |
. . . . . 6
|
| 29 | ivth.3 |
. . . . . . 7
| |
| 30 | 29 | ad2antrr 488 |
. . . . . 6
|
| 31 | axltwlin 8142 |
. . . . . 6
| |
| 32 | 25, 28, 30, 31 | syl3anc 1250 |
. . . . 5
|
| 33 | 20, 32 | mpd 13 |
. . . 4
|
| 34 | 16 | adantr 276 |
. . . . . . 7
|
| 35 | simpr 110 |
. . . . . . 7
| |
| 36 | fveq2 5578 |
. . . . . . . . 9
| |
| 37 | 36 | breq1d 4055 |
. . . . . . . 8
|
| 38 | ivthinclem.l |
. . . . . . . 8
| |
| 39 | 37, 38 | elrab2 2932 |
. . . . . . 7
|
| 40 | 34, 35, 39 | sylanbrc 417 |
. . . . . 6
|
| 41 | 40 | ex 115 |
. . . . 5
|
| 42 | 18 | adantr 276 |
. . . . . . 7
|
| 43 | simpr 110 |
. . . . . . 7
| |
| 44 | fveq2 5578 |
. . . . . . . . 9
| |
| 45 | 44 | breq2d 4057 |
. . . . . . . 8
|
| 46 | ivthinclem.r |
. . . . . . . 8
| |
| 47 | 45, 46 | elrab2 2932 |
. . . . . . 7
|
| 48 | 42, 43, 47 | sylanbrc 417 |
. . . . . 6
|
| 49 | 48 | ex 115 |
. . . . 5
|
| 50 | 41, 49 | orim12d 788 |
. . . 4
|
| 51 | 33, 50 | mpd 13 |
. . 3
|
| 52 | 51 | ex 115 |
. 2
|
| 53 | 52 | ralrimivva 2588 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltwlin 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-iota 5233 df-fv 5280 df-pnf 8111 df-mnf 8112 df-ltxr 8114 |
| This theorem is referenced by: ivthinclemex 15147 |
| Copyright terms: Public domain | W3C validator |