Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ivthinclemloc | Unicode version |
Description: Lemma for ivthinc 13271. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.) |
Ref | Expression |
---|---|
ivth.1 | |
ivth.2 | |
ivth.3 | |
ivth.4 | |
ivth.5 | |
ivth.7 | |
ivth.8 | |
ivth.9 | |
ivthinc.i | |
ivthinclem.l | |
ivthinclem.r |
Ref | Expression |
---|---|
ivthinclemloc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . . 6 | |
2 | breq2 3986 | . . . . . . . 8 | |
3 | fveq2 5486 | . . . . . . . . 9 | |
4 | 3 | breq2d 3994 | . . . . . . . 8 |
5 | 2, 4 | imbi12d 233 | . . . . . . 7 |
6 | breq1 3985 | . . . . . . . . . 10 | |
7 | fveq2 5486 | . . . . . . . . . . 11 | |
8 | 7 | breq1d 3992 | . . . . . . . . . 10 |
9 | 6, 8 | imbi12d 233 | . . . . . . . . 9 |
10 | 9 | ralbidv 2466 | . . . . . . . 8 |
11 | ivthinc.i | . . . . . . . . . . . 12 | |
12 | 11 | expr 373 | . . . . . . . . . . 11 |
13 | 12 | ralrimiva 2539 | . . . . . . . . . 10 |
14 | 13 | ralrimiva 2539 | . . . . . . . . 9 |
15 | 14 | ad2antrr 480 | . . . . . . . 8 |
16 | simplrl 525 | . . . . . . . 8 | |
17 | 10, 15, 16 | rspcdva 2835 | . . . . . . 7 |
18 | simplrr 526 | . . . . . . 7 | |
19 | 5, 17, 18 | rspcdva 2835 | . . . . . 6 |
20 | 1, 19 | mpd 13 | . . . . 5 |
21 | 7 | eleq1d 2235 | . . . . . . 7 |
22 | ivth.8 | . . . . . . . . 9 | |
23 | 22 | ralrimiva 2539 | . . . . . . . 8 |
24 | 23 | ad2antrr 480 | . . . . . . 7 |
25 | 21, 24, 16 | rspcdva 2835 | . . . . . 6 |
26 | fveq2 5486 | . . . . . . . 8 | |
27 | 26 | eleq1d 2235 | . . . . . . 7 |
28 | 27, 24, 18 | rspcdva 2835 | . . . . . 6 |
29 | ivth.3 | . . . . . . 7 | |
30 | 29 | ad2antrr 480 | . . . . . 6 |
31 | axltwlin 7966 | . . . . . 6 | |
32 | 25, 28, 30, 31 | syl3anc 1228 | . . . . 5 |
33 | 20, 32 | mpd 13 | . . . 4 |
34 | 16 | adantr 274 | . . . . . . 7 |
35 | simpr 109 | . . . . . . 7 | |
36 | fveq2 5486 | . . . . . . . . 9 | |
37 | 36 | breq1d 3992 | . . . . . . . 8 |
38 | ivthinclem.l | . . . . . . . 8 | |
39 | 37, 38 | elrab2 2885 | . . . . . . 7 |
40 | 34, 35, 39 | sylanbrc 414 | . . . . . 6 |
41 | 40 | ex 114 | . . . . 5 |
42 | 18 | adantr 274 | . . . . . . 7 |
43 | simpr 109 | . . . . . . 7 | |
44 | fveq2 5486 | . . . . . . . . 9 | |
45 | 44 | breq2d 3994 | . . . . . . . 8 |
46 | ivthinclem.r | . . . . . . . 8 | |
47 | 45, 46 | elrab2 2885 | . . . . . . 7 |
48 | 42, 43, 47 | sylanbrc 414 | . . . . . 6 |
49 | 48 | ex 114 | . . . . 5 |
50 | 41, 49 | orim12d 776 | . . . 4 |
51 | 33, 50 | mpd 13 | . . 3 |
52 | 51 | ex 114 | . 2 |
53 | 52 | ralrimivva 2548 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 wral 2444 crab 2448 wss 3116 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 cr 7752 clt 7933 cicc 9827 ccncf 13207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltwlin 7866 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-iota 5153 df-fv 5196 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: ivthinclemex 13270 |
Copyright terms: Public domain | W3C validator |