| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ivthinclemloc | Unicode version | ||
| Description: Lemma for ivthinc 15230. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.) |
| Ref | Expression |
|---|---|
| ivth.1 |
|
| ivth.2 |
|
| ivth.3 |
|
| ivth.4 |
|
| ivth.5 |
|
| ivth.7 |
|
| ivth.8 |
|
| ivth.9 |
|
| ivthinc.i |
|
| ivthinclem.l |
|
| ivthinclem.r |
|
| Ref | Expression |
|---|---|
| ivthinclemloc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | breq2 4063 |
. . . . . . . 8
| |
| 3 | fveq2 5599 |
. . . . . . . . 9
| |
| 4 | 3 | breq2d 4071 |
. . . . . . . 8
|
| 5 | 2, 4 | imbi12d 234 |
. . . . . . 7
|
| 6 | breq1 4062 |
. . . . . . . . . 10
| |
| 7 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 8 | 7 | breq1d 4069 |
. . . . . . . . . 10
|
| 9 | 6, 8 | imbi12d 234 |
. . . . . . . . 9
|
| 10 | 9 | ralbidv 2508 |
. . . . . . . 8
|
| 11 | ivthinc.i |
. . . . . . . . . . . 12
| |
| 12 | 11 | expr 375 |
. . . . . . . . . . 11
|
| 13 | 12 | ralrimiva 2581 |
. . . . . . . . . 10
|
| 14 | 13 | ralrimiva 2581 |
. . . . . . . . 9
|
| 15 | 14 | ad2antrr 488 |
. . . . . . . 8
|
| 16 | simplrl 535 |
. . . . . . . 8
| |
| 17 | 10, 15, 16 | rspcdva 2889 |
. . . . . . 7
|
| 18 | simplrr 536 |
. . . . . . 7
| |
| 19 | 5, 17, 18 | rspcdva 2889 |
. . . . . 6
|
| 20 | 1, 19 | mpd 13 |
. . . . 5
|
| 21 | 7 | eleq1d 2276 |
. . . . . . 7
|
| 22 | ivth.8 |
. . . . . . . . 9
| |
| 23 | 22 | ralrimiva 2581 |
. . . . . . . 8
|
| 24 | 23 | ad2antrr 488 |
. . . . . . 7
|
| 25 | 21, 24, 16 | rspcdva 2889 |
. . . . . 6
|
| 26 | fveq2 5599 |
. . . . . . . 8
| |
| 27 | 26 | eleq1d 2276 |
. . . . . . 7
|
| 28 | 27, 24, 18 | rspcdva 2889 |
. . . . . 6
|
| 29 | ivth.3 |
. . . . . . 7
| |
| 30 | 29 | ad2antrr 488 |
. . . . . 6
|
| 31 | axltwlin 8175 |
. . . . . 6
| |
| 32 | 25, 28, 30, 31 | syl3anc 1250 |
. . . . 5
|
| 33 | 20, 32 | mpd 13 |
. . . 4
|
| 34 | 16 | adantr 276 |
. . . . . . 7
|
| 35 | simpr 110 |
. . . . . . 7
| |
| 36 | fveq2 5599 |
. . . . . . . . 9
| |
| 37 | 36 | breq1d 4069 |
. . . . . . . 8
|
| 38 | ivthinclem.l |
. . . . . . . 8
| |
| 39 | 37, 38 | elrab2 2939 |
. . . . . . 7
|
| 40 | 34, 35, 39 | sylanbrc 417 |
. . . . . 6
|
| 41 | 40 | ex 115 |
. . . . 5
|
| 42 | 18 | adantr 276 |
. . . . . . 7
|
| 43 | simpr 110 |
. . . . . . 7
| |
| 44 | fveq2 5599 |
. . . . . . . . 9
| |
| 45 | 44 | breq2d 4071 |
. . . . . . . 8
|
| 46 | ivthinclem.r |
. . . . . . . 8
| |
| 47 | 45, 46 | elrab2 2939 |
. . . . . . 7
|
| 48 | 42, 43, 47 | sylanbrc 417 |
. . . . . 6
|
| 49 | 48 | ex 115 |
. . . . 5
|
| 50 | 41, 49 | orim12d 788 |
. . . 4
|
| 51 | 33, 50 | mpd 13 |
. . 3
|
| 52 | 51 | ex 115 |
. 2
|
| 53 | 52 | ralrimivva 2590 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-pre-ltwlin 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-pnf 8144 df-mnf 8145 df-ltxr 8147 |
| This theorem is referenced by: ivthinclemex 15229 |
| Copyright terms: Public domain | W3C validator |