| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ivthinclemloc | Unicode version | ||
| Description: Lemma for ivthinc 14879. Locatedness. (Contributed by Jim Kingdon, 18-Feb-2024.) | 
| Ref | Expression | 
|---|---|
| ivth.1 | 
 | 
| ivth.2 | 
 | 
| ivth.3 | 
 | 
| ivth.4 | 
 | 
| ivth.5 | 
 | 
| ivth.7 | 
 | 
| ivth.8 | 
 | 
| ivth.9 | 
 | 
| ivthinc.i | 
 | 
| ivthinclem.l | 
 | 
| ivthinclem.r | 
 | 
| Ref | Expression | 
|---|---|
| ivthinclemloc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. . . . . 6
 | |
| 2 | breq2 4037 | 
. . . . . . . 8
 | |
| 3 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 4 | 3 | breq2d 4045 | 
. . . . . . . 8
 | 
| 5 | 2, 4 | imbi12d 234 | 
. . . . . . 7
 | 
| 6 | breq1 4036 | 
. . . . . . . . . 10
 | |
| 7 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 8 | 7 | breq1d 4043 | 
. . . . . . . . . 10
 | 
| 9 | 6, 8 | imbi12d 234 | 
. . . . . . . . 9
 | 
| 10 | 9 | ralbidv 2497 | 
. . . . . . . 8
 | 
| 11 | ivthinc.i | 
. . . . . . . . . . . 12
 | |
| 12 | 11 | expr 375 | 
. . . . . . . . . . 11
 | 
| 13 | 12 | ralrimiva 2570 | 
. . . . . . . . . 10
 | 
| 14 | 13 | ralrimiva 2570 | 
. . . . . . . . 9
 | 
| 15 | 14 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 16 | simplrl 535 | 
. . . . . . . 8
 | |
| 17 | 10, 15, 16 | rspcdva 2873 | 
. . . . . . 7
 | 
| 18 | simplrr 536 | 
. . . . . . 7
 | |
| 19 | 5, 17, 18 | rspcdva 2873 | 
. . . . . 6
 | 
| 20 | 1, 19 | mpd 13 | 
. . . . 5
 | 
| 21 | 7 | eleq1d 2265 | 
. . . . . . 7
 | 
| 22 | ivth.8 | 
. . . . . . . . 9
 | |
| 23 | 22 | ralrimiva 2570 | 
. . . . . . . 8
 | 
| 24 | 23 | ad2antrr 488 | 
. . . . . . 7
 | 
| 25 | 21, 24, 16 | rspcdva 2873 | 
. . . . . 6
 | 
| 26 | fveq2 5558 | 
. . . . . . . 8
 | |
| 27 | 26 | eleq1d 2265 | 
. . . . . . 7
 | 
| 28 | 27, 24, 18 | rspcdva 2873 | 
. . . . . 6
 | 
| 29 | ivth.3 | 
. . . . . . 7
 | |
| 30 | 29 | ad2antrr 488 | 
. . . . . 6
 | 
| 31 | axltwlin 8094 | 
. . . . . 6
 | |
| 32 | 25, 28, 30, 31 | syl3anc 1249 | 
. . . . 5
 | 
| 33 | 20, 32 | mpd 13 | 
. . . 4
 | 
| 34 | 16 | adantr 276 | 
. . . . . . 7
 | 
| 35 | simpr 110 | 
. . . . . . 7
 | |
| 36 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 37 | 36 | breq1d 4043 | 
. . . . . . . 8
 | 
| 38 | ivthinclem.l | 
. . . . . . . 8
 | |
| 39 | 37, 38 | elrab2 2923 | 
. . . . . . 7
 | 
| 40 | 34, 35, 39 | sylanbrc 417 | 
. . . . . 6
 | 
| 41 | 40 | ex 115 | 
. . . . 5
 | 
| 42 | 18 | adantr 276 | 
. . . . . . 7
 | 
| 43 | simpr 110 | 
. . . . . . 7
 | |
| 44 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 45 | 44 | breq2d 4045 | 
. . . . . . . 8
 | 
| 46 | ivthinclem.r | 
. . . . . . . 8
 | |
| 47 | 45, 46 | elrab2 2923 | 
. . . . . . 7
 | 
| 48 | 42, 43, 47 | sylanbrc 417 | 
. . . . . 6
 | 
| 49 | 48 | ex 115 | 
. . . . 5
 | 
| 50 | 41, 49 | orim12d 787 | 
. . . 4
 | 
| 51 | 33, 50 | mpd 13 | 
. . 3
 | 
| 52 | 51 | ex 115 | 
. 2
 | 
| 53 | 52 | ralrimivva 2579 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltwlin 7992 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-pnf 8063 df-mnf 8064 df-ltxr 8066 | 
| This theorem is referenced by: ivthinclemex 14878 | 
| Copyright terms: Public domain | W3C validator |