ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemex Unicode version

Theorem ivthinclemex 12778
Description: Lemma for ivthinc 12779. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemex  |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
Distinct variable groups:    A, q, r, w    x, A, y, q, r    z, A, q, r    B, q, r, w    x, B, y    z, B    w, F    x, F, y    L, q, r, x, y    z, L    R, q, r, x, y    z, R    w, U    ph, q, r, x, y    ph, z
Allowed substitution hints:    ph( w)    D( x, y, z, w, r, q)    R( w)    U( x, y, z, r, q)    F( z, r, q)    L( w)

Proof of Theorem ivthinclemex
StepHypRef Expression
1 ivth.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ivth.2 . 2  |-  ( ph  ->  B  e.  RR )
3 ivthinclem.l . . . 4  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
4 ssrab2 3177 . . . 4  |-  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U }  C_  ( A [,] B )
53, 4eqsstri 3124 . . 3  |-  L  C_  ( A [,] B )
65a1i 9 . 2  |-  ( ph  ->  L  C_  ( A [,] B ) )
7 ivthinclem.r . . . 4  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
8 ssrab2 3177 . . . 4  |-  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) }  C_  ( A [,] B )
97, 8eqsstri 3124 . . 3  |-  R  C_  ( A [,] B )
109a1i 9 . 2  |-  ( ph  ->  R  C_  ( A [,] B ) )
11 ivth.3 . . 3  |-  ( ph  ->  U  e.  RR )
12 ivth.4 . . 3  |-  ( ph  ->  A  <  B )
13 ivth.5 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  D )
14 ivth.7 . . 3  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
15 ivth.8 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . 3  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
17 ivthinc.i . . 3  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
181, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlm 12770 . 2  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
191, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemum 12771 . 2  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
201, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlr 12773 . 2  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
211, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemur 12775 . 2  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
221, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemdisj 12776 . 2  |-  ( ph  ->  ( L  i^i  R
)  =  (/) )
231, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemloc 12777 . 2  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  R
) ) )
241, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12dedekindicc 12769 1  |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414   E!wreu 2416   {crab 2418    C_ wss 3066   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   CCcc 7611   RRcr 7612    < clt 7793   (,)cioo 9664   [,]cicc 9667   -cn->ccncf 12715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733  ax-pre-suploc 7734
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-map 6537  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-ioo 9668  df-icc 9671  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-cncf 12716
This theorem is referenced by:  ivthinc  12779
  Copyright terms: Public domain W3C validator