ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemex Unicode version

Theorem ivthinclemex 14503
Description: Lemma for ivthinc 14504. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemex  |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
Distinct variable groups:    A, q, r, w    x, A, y, q, r    z, A, q, r    B, q, r, w    x, B, y    z, B    w, F    x, F, y    L, q, r, x, y    z, L    R, q, r, x, y    z, R    w, U    ph, q, r, x, y    ph, z
Allowed substitution hints:    ph( w)    D( x, y, z, w, r, q)    R( w)    U( x, y, z, r, q)    F( z, r, q)    L( w)

Proof of Theorem ivthinclemex
StepHypRef Expression
1 ivth.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ivth.2 . 2  |-  ( ph  ->  B  e.  RR )
3 ivthinclem.l . . . 4  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
4 ssrab2 3254 . . . 4  |-  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U }  C_  ( A [,] B )
53, 4eqsstri 3201 . . 3  |-  L  C_  ( A [,] B )
65a1i 9 . 2  |-  ( ph  ->  L  C_  ( A [,] B ) )
7 ivthinclem.r . . . 4  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
8 ssrab2 3254 . . . 4  |-  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) }  C_  ( A [,] B )
97, 8eqsstri 3201 . . 3  |-  R  C_  ( A [,] B )
109a1i 9 . 2  |-  ( ph  ->  R  C_  ( A [,] B ) )
11 ivth.3 . . 3  |-  ( ph  ->  U  e.  RR )
12 ivth.4 . . 3  |-  ( ph  ->  A  <  B )
13 ivth.5 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  D )
14 ivth.7 . . 3  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
15 ivth.8 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . 3  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
17 ivthinc.i . . 3  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
181, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlm 14495 . 2  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
191, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemum 14496 . 2  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
201, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlr 14498 . 2  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
211, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemur 14500 . 2  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
221, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemdisj 14501 . 2  |-  ( ph  ->  ( L  i^i  R
)  =  (/) )
231, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemloc 14502 . 2  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  R
) ) )
241, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12dedekindicc 14494 1  |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2159   A.wral 2467   E!wreu 2469   {crab 2471    C_ wss 3143   class class class wbr 4017   ` cfv 5230  (class class class)co 5890   CCcc 7826   RRcr 7827    < clt 8009   (,)cioo 9905   [,]cicc 9908   -cn->ccncf 14440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-precex 7938  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944  ax-pre-mulgt0 7945  ax-pre-mulext 7946  ax-arch 7947  ax-caucvg 7948  ax-pre-suploc 7949
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-isom 5239  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-frec 6409  df-map 6667  df-sup 7000  df-inf 7001  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-reap 8549  df-ap 8556  df-div 8647  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-n0 9194  df-z 9271  df-uz 9546  df-rp 9671  df-ioo 9909  df-icc 9912  df-seqfrec 10463  df-exp 10537  df-cj 10868  df-re 10869  df-im 10870  df-rsqrt 11024  df-abs 11025  df-cncf 14441
This theorem is referenced by:  ivthinc  14504
  Copyright terms: Public domain W3C validator