ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemex Unicode version

Theorem ivthinclemex 13031
Description: Lemma for ivthinc 13032. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemex  |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
Distinct variable groups:    A, q, r, w    x, A, y, q, r    z, A, q, r    B, q, r, w    x, B, y    z, B    w, F    x, F, y    L, q, r, x, y    z, L    R, q, r, x, y    z, R    w, U    ph, q, r, x, y    ph, z
Allowed substitution hints:    ph( w)    D( x, y, z, w, r, q)    R( w)    U( x, y, z, r, q)    F( z, r, q)    L( w)

Proof of Theorem ivthinclemex
StepHypRef Expression
1 ivth.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ivth.2 . 2  |-  ( ph  ->  B  e.  RR )
3 ivthinclem.l . . . 4  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
4 ssrab2 3213 . . . 4  |-  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U }  C_  ( A [,] B )
53, 4eqsstri 3160 . . 3  |-  L  C_  ( A [,] B )
65a1i 9 . 2  |-  ( ph  ->  L  C_  ( A [,] B ) )
7 ivthinclem.r . . . 4  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
8 ssrab2 3213 . . . 4  |-  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) }  C_  ( A [,] B )
97, 8eqsstri 3160 . . 3  |-  R  C_  ( A [,] B )
109a1i 9 . 2  |-  ( ph  ->  R  C_  ( A [,] B ) )
11 ivth.3 . . 3  |-  ( ph  ->  U  e.  RR )
12 ivth.4 . . 3  |-  ( ph  ->  A  <  B )
13 ivth.5 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  D )
14 ivth.7 . . 3  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
15 ivth.8 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . 3  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
17 ivthinc.i . . 3  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
181, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlm 13023 . 2  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
191, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemum 13024 . 2  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
201, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlr 13026 . 2  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
211, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemur 13028 . 2  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
221, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemdisj 13029 . 2  |-  ( ph  ->  ( L  i^i  R
)  =  (/) )
231, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemloc 13030 . 2  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  R
) ) )
241, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12dedekindicc 13022 1  |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   E!wreu 2437   {crab 2439    C_ wss 3102   class class class wbr 3965   ` cfv 5170  (class class class)co 5824   CCcc 7730   RRcr 7731    < clt 7912   (,)cioo 9792   [,]cicc 9795   -cn->ccncf 12968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852  ax-pre-suploc 7853
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-map 6595  df-sup 6928  df-inf 6929  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-rp 9561  df-ioo 9796  df-icc 9799  df-seqfrec 10345  df-exp 10419  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-cncf 12969
This theorem is referenced by:  ivthinc  13032
  Copyright terms: Public domain W3C validator