ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemex Unicode version

Theorem ivthinclemex 15114
Description: Lemma for ivthinc 15115. Existence of a number between the lower cut and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
Hypotheses
Ref Expression
ivth.1  |-  ( ph  ->  A  e.  RR )
ivth.2  |-  ( ph  ->  B  e.  RR )
ivth.3  |-  ( ph  ->  U  e.  RR )
ivth.4  |-  ( ph  ->  A  <  B )
ivth.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivth.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivth.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
ivth.9  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
ivthinc.i  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
ivthinclem.l  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
ivthinclem.r  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
Assertion
Ref Expression
ivthinclemex  |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
Distinct variable groups:    A, q, r, w    x, A, y, q, r    z, A, q, r    B, q, r, w    x, B, y    z, B    w, F    x, F, y    L, q, r, x, y    z, L    R, q, r, x, y    z, R    w, U    ph, q, r, x, y    ph, z
Allowed substitution hints:    ph( w)    D( x, y, z, w, r, q)    R( w)    U( x, y, z, r, q)    F( z, r, q)    L( w)

Proof of Theorem ivthinclemex
StepHypRef Expression
1 ivth.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ivth.2 . 2  |-  ( ph  ->  B  e.  RR )
3 ivthinclem.l . . . 4  |-  L  =  { w  e.  ( A [,] B )  |  ( F `  w )  <  U }
4 ssrab2 3278 . . . 4  |-  { w  e.  ( A [,] B
)  |  ( F `
 w )  < 
U }  C_  ( A [,] B )
53, 4eqsstri 3225 . . 3  |-  L  C_  ( A [,] B )
65a1i 9 . 2  |-  ( ph  ->  L  C_  ( A [,] B ) )
7 ivthinclem.r . . . 4  |-  R  =  { w  e.  ( A [,] B )  |  U  <  ( F `  w ) }
8 ssrab2 3278 . . . 4  |-  { w  e.  ( A [,] B
)  |  U  < 
( F `  w
) }  C_  ( A [,] B )
97, 8eqsstri 3225 . . 3  |-  R  C_  ( A [,] B )
109a1i 9 . 2  |-  ( ph  ->  R  C_  ( A [,] B ) )
11 ivth.3 . . 3  |-  ( ph  ->  U  e.  RR )
12 ivth.4 . . 3  |-  ( ph  ->  A  <  B )
13 ivth.5 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  D )
14 ivth.7 . . 3  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
15 ivth.8 . . 3  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
16 ivth.9 . . 3  |-  ( ph  ->  ( ( F `  A )  <  U  /\  U  <  ( F `
 B ) ) )
17 ivthinc.i . . 3  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  (
y  e.  ( A [,] B )  /\  x  <  y ) )  ->  ( F `  x )  <  ( F `  y )
)
181, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlm 15106 . 2  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
191, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemum 15107 . 2  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  R )
201, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemlr 15109 . 2  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
211, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemur 15111 . 2  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  R  <->  E. q  e.  R  q  <  r ) )
221, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemdisj 15112 . 2  |-  ( ph  ->  ( L  i^i  R
)  =  (/) )
231, 2, 11, 12, 13, 14, 15, 16, 17, 3, 7ivthinclemloc 15113 . 2  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  R
) ) )
241, 2, 6, 10, 18, 19, 20, 21, 22, 23, 12dedekindicc 15105 1  |-  ( ph  ->  E! z  e.  ( A (,) B ) ( A. q  e.  L  q  <  z  /\  A. r  e.  R  z  <  r ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E!wreu 2486   {crab 2488    C_ wss 3166   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924    < clt 8107   (,)cioo 10010   [,]cicc 10013   -cn->ccncf 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-pre-suploc 8046
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-ioo 10014  df-icc 10017  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-cncf 15043
This theorem is referenced by:  ivthinc  15115
  Copyright terms: Public domain W3C validator