Proof of Theorem ivthinclemloc
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → 𝑞 < 𝑟) | 
| 2 |   | breq2 4037 | 
. . . . . . . 8
⊢ (𝑦 = 𝑟 → (𝑞 < 𝑦 ↔ 𝑞 < 𝑟)) | 
| 3 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑦 = 𝑟 → (𝐹‘𝑦) = (𝐹‘𝑟)) | 
| 4 | 3 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑦 = 𝑟 → ((𝐹‘𝑞) < (𝐹‘𝑦) ↔ (𝐹‘𝑞) < (𝐹‘𝑟))) | 
| 5 | 2, 4 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑦 = 𝑟 → ((𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)) ↔ (𝑞 < 𝑟 → (𝐹‘𝑞) < (𝐹‘𝑟)))) | 
| 6 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑞 → (𝑥 < 𝑦 ↔ 𝑞 < 𝑦)) | 
| 7 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑞 → (𝐹‘𝑥) = (𝐹‘𝑞)) | 
| 8 | 7 | breq1d 4043 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) < (𝐹‘𝑦) ↔ (𝐹‘𝑞) < (𝐹‘𝑦))) | 
| 9 | 6, 8 | imbi12d 234 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑞 → ((𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ (𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)))) | 
| 10 | 9 | ralbidv 2497 | 
. . . . . . . 8
⊢ (𝑥 = 𝑞 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦)))) | 
| 11 |   | ivthinc.i | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) | 
| 12 | 11 | expr 375 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) | 
| 13 | 12 | ralrimiva 2570 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) | 
| 14 | 13 | ralrimiva 2570 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) | 
| 15 | 14 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹‘𝑥) < (𝐹‘𝑦))) | 
| 16 |   | simplrl 535 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → 𝑞 ∈ (𝐴[,]𝐵)) | 
| 17 | 10, 15, 16 | rspcdva 2873 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑞 < 𝑦 → (𝐹‘𝑞) < (𝐹‘𝑦))) | 
| 18 |   | simplrr 536 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → 𝑟 ∈ (𝐴[,]𝐵)) | 
| 19 | 5, 17, 18 | rspcdva 2873 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → (𝑞 < 𝑟 → (𝐹‘𝑞) < (𝐹‘𝑟))) | 
| 20 | 1, 19 | mpd 13 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → (𝐹‘𝑞) < (𝐹‘𝑟)) | 
| 21 | 7 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = 𝑞 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑞) ∈ ℝ)) | 
| 22 |   | ivth.8 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) | 
| 23 | 22 | ralrimiva 2570 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) | 
| 24 | 23 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) ∈ ℝ) | 
| 25 | 21, 24, 16 | rspcdva 2873 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → (𝐹‘𝑞) ∈ ℝ) | 
| 26 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑥 = 𝑟 → (𝐹‘𝑥) = (𝐹‘𝑟)) | 
| 27 | 26 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = 𝑟 → ((𝐹‘𝑥) ∈ ℝ ↔ (𝐹‘𝑟) ∈ ℝ)) | 
| 28 | 27, 24, 18 | rspcdva 2873 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → (𝐹‘𝑟) ∈ ℝ) | 
| 29 |   | ivth.3 | 
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ ℝ) | 
| 30 | 29 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → 𝑈 ∈ ℝ) | 
| 31 |   | axltwlin 8094 | 
. . . . . 6
⊢ (((𝐹‘𝑞) ∈ ℝ ∧ (𝐹‘𝑟) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((𝐹‘𝑞) < (𝐹‘𝑟) → ((𝐹‘𝑞) < 𝑈 ∨ 𝑈 < (𝐹‘𝑟)))) | 
| 32 | 25, 28, 30, 31 | syl3anc 1249 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → ((𝐹‘𝑞) < (𝐹‘𝑟) → ((𝐹‘𝑞) < 𝑈 ∨ 𝑈 < (𝐹‘𝑟)))) | 
| 33 | 20, 32 | mpd 13 | 
. . . 4
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → ((𝐹‘𝑞) < 𝑈 ∨ 𝑈 < (𝐹‘𝑟))) | 
| 34 | 16 | adantr 276 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) ∧ (𝐹‘𝑞) < 𝑈) → 𝑞 ∈ (𝐴[,]𝐵)) | 
| 35 |   | simpr 110 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) ∧ (𝐹‘𝑞) < 𝑈) → (𝐹‘𝑞) < 𝑈) | 
| 36 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑞 → (𝐹‘𝑤) = (𝐹‘𝑞)) | 
| 37 | 36 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝑤 = 𝑞 → ((𝐹‘𝑤) < 𝑈 ↔ (𝐹‘𝑞) < 𝑈)) | 
| 38 |   | ivthinclem.l | 
. . . . . . . 8
⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈} | 
| 39 | 37, 38 | elrab2 2923 | 
. . . . . . 7
⊢ (𝑞 ∈ 𝐿 ↔ (𝑞 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑞) < 𝑈)) | 
| 40 | 34, 35, 39 | sylanbrc 417 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) ∧ (𝐹‘𝑞) < 𝑈) → 𝑞 ∈ 𝐿) | 
| 41 | 40 | ex 115 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → ((𝐹‘𝑞) < 𝑈 → 𝑞 ∈ 𝐿)) | 
| 42 | 18 | adantr 276 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) ∧ 𝑈 < (𝐹‘𝑟)) → 𝑟 ∈ (𝐴[,]𝐵)) | 
| 43 |   | simpr 110 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) ∧ 𝑈 < (𝐹‘𝑟)) → 𝑈 < (𝐹‘𝑟)) | 
| 44 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑤 = 𝑟 → (𝐹‘𝑤) = (𝐹‘𝑟)) | 
| 45 | 44 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑤 = 𝑟 → (𝑈 < (𝐹‘𝑤) ↔ 𝑈 < (𝐹‘𝑟))) | 
| 46 |   | ivthinclem.r | 
. . . . . . . 8
⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} | 
| 47 | 45, 46 | elrab2 2923 | 
. . . . . . 7
⊢ (𝑟 ∈ 𝑅 ↔ (𝑟 ∈ (𝐴[,]𝐵) ∧ 𝑈 < (𝐹‘𝑟))) | 
| 48 | 42, 43, 47 | sylanbrc 417 | 
. . . . . 6
⊢ ((((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) ∧ 𝑈 < (𝐹‘𝑟)) → 𝑟 ∈ 𝑅) | 
| 49 | 48 | ex 115 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → (𝑈 < (𝐹‘𝑟) → 𝑟 ∈ 𝑅)) | 
| 50 | 41, 49 | orim12d 787 | 
. . . 4
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → (((𝐹‘𝑞) < 𝑈 ∨ 𝑈 < (𝐹‘𝑟)) → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅))) | 
| 51 | 33, 50 | mpd 13 | 
. . 3
⊢ (((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) ∧ 𝑞 < 𝑟) → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅)) | 
| 52 | 51 | ex 115 | 
. 2
⊢ ((𝜑 ∧ (𝑞 ∈ (𝐴[,]𝐵) ∧ 𝑟 ∈ (𝐴[,]𝐵))) → (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅))) | 
| 53 | 52 | ralrimivva 2579 | 
1
⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅))) |