ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsn0 Unicode version

Theorem lmodsn0 13797
Description: The set of scalars in a left module is nonempty. It is also inhabited, by lmod0cl 13810. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodsn0.f  |-  F  =  (Scalar `  W )
lmodsn0.b  |-  B  =  ( Base `  F
)
Assertion
Ref Expression
lmodsn0  |-  ( W  e.  LMod  ->  B  =/=  (/) )

Proof of Theorem lmodsn0
StepHypRef Expression
1 lmodsn0.f . . 3  |-  F  =  (Scalar `  W )
21lmodfgrp 13792 . 2  |-  ( W  e.  LMod  ->  F  e. 
Grp )
3 lmodsn0.b . . 3  |-  B  =  ( Base `  F
)
43grpbn0 13102 . 2  |-  ( F  e.  Grp  ->  B  =/=  (/) )
52, 4syl 14 1  |-  ( W  e.  LMod  ->  B  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    =/= wne 2364   (/)c0 3446   ` cfv 5254   Basecbs 12618  Scalarcsca 12698   Grpcgrp 13072   LModclmod 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-ring 13494  df-lmod 13785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator