ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcvg Unicode version

Theorem lmcvg 14396
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmcvg.1  |-  Z  =  ( ZZ>= `  M )
lmcvg.3  |-  ( ph  ->  P  e.  U )
lmcvg.4  |-  ( ph  ->  M  e.  ZZ )
lmcvg.5  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcvg.6  |-  ( ph  ->  U  e.  J )
Assertion
Ref Expression
lmcvg  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Distinct variable groups:    j, k, F   
j, J, k    P, j, k    ph, j, k    U, j, k    j, M   
j, Z, k
Allowed substitution hint:    M( k)

Proof of Theorem lmcvg
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 lmcvg.3 . 2  |-  ( ph  ->  P  e.  U )
2 eleq2 2257 . . . 4  |-  ( u  =  U  ->  ( P  e.  u  <->  P  e.  U ) )
3 eleq2 2257 . . . . 5  |-  ( u  =  U  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  U
) )
43rexralbidv 2520 . . . 4  |-  ( u  =  U  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) )
52, 4imbi12d 234 . . 3  |-  ( u  =  U  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  <->  ( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) ) )
6 lmcvg.5 . . . . . 6  |-  ( ph  ->  F ( ~~> t `  J ) P )
7 lmrcl 14370 . . . . . . . . 9  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  J  e.  Top )
9 eqid 2193 . . . . . . . . 9  |-  U. J  =  U. J
109toptopon 14197 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
118, 10sylib 122 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
12 lmcvg.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
13 lmcvg.4 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1411, 12, 13lmbr2 14393 . . . . . 6  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e. 
U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
156, 14mpbid 147 . . . . 5  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e.  U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )
1615simp3d 1013 . . . 4  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
17 simpr 110 . . . . . . . 8  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  ->  ( F `  k )  e.  u
)
1817ralimi 2557 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
1918reximi 2591 . . . . . 6  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
2019imim2i 12 . . . . 5  |-  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )
2120ralimi 2557 . . . 4  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
2216, 21syl 14 . . 3  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
23 lmcvg.6 . . 3  |-  ( ph  ->  U  e.  J )
245, 22, 23rspcdva 2870 . 2  |-  ( ph  ->  ( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U ) )
251, 24mpd 13 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   U.cuni 3836   class class class wbr 4030   dom cdm 4660   ` cfv 5255  (class class class)co 5919    ^pm cpm 6705   CCcc 7872   ZZcz 9320   ZZ>=cuz 9595   Topctop 14176  TopOnctopon 14189   ~~> tclm 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pm 6707  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-top 14177  df-topon 14190  df-lm 14369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator