ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcvg Unicode version

Theorem lmcvg 14689
Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmcvg.1  |-  Z  =  ( ZZ>= `  M )
lmcvg.3  |-  ( ph  ->  P  e.  U )
lmcvg.4  |-  ( ph  ->  M  e.  ZZ )
lmcvg.5  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcvg.6  |-  ( ph  ->  U  e.  J )
Assertion
Ref Expression
lmcvg  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Distinct variable groups:    j, k, F   
j, J, k    P, j, k    ph, j, k    U, j, k    j, M   
j, Z, k
Allowed substitution hint:    M( k)

Proof of Theorem lmcvg
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 lmcvg.3 . 2  |-  ( ph  ->  P  e.  U )
2 eleq2 2269 . . . 4  |-  ( u  =  U  ->  ( P  e.  u  <->  P  e.  U ) )
3 eleq2 2269 . . . . 5  |-  ( u  =  U  ->  (
( F `  k
)  e.  u  <->  ( F `  k )  e.  U
) )
43rexralbidv 2532 . . . 4  |-  ( u  =  U  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) )
52, 4imbi12d 234 . . 3  |-  ( u  =  U  ->  (
( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  <->  ( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  U ) ) )
6 lmcvg.5 . . . . . 6  |-  ( ph  ->  F ( ~~> t `  J ) P )
7 lmrcl 14663 . . . . . . . . 9  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
86, 7syl 14 . . . . . . . 8  |-  ( ph  ->  J  e.  Top )
9 eqid 2205 . . . . . . . . 9  |-  U. J  =  U. J
109toptopon 14490 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
118, 10sylib 122 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
12 lmcvg.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
13 lmcvg.4 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1411, 12, 13lmbr2 14686 . . . . . 6  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e. 
U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) ) ) ) )
156, 14mpbid 147 . . . . 5  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e.  U. J  /\  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  u
) ) ) )
1615simp3d 1014 . . . 4  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) ) )
17 simpr 110 . . . . . . . 8  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  u )  ->  ( F `  k )  e.  u
)
1817ralimi 2569 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
1918reximi 2603 . . . . . 6  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )
2019imim2i 12 . . . . 5  |-  ( ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  u ) )  ->  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )
2120ralimi 2569 . . . 4  |-  ( A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  u ) )  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
2216, 21syl 14 . . 3  |-  ( ph  ->  A. u  e.  J  ( P  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
23 lmcvg.6 . . 3  |-  ( ph  ->  U  e.  J )
245, 22, 23rspcdva 2882 . 2  |-  ( ph  ->  ( P  e.  U  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U ) )
251, 24mpd 13 1  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   U.cuni 3850   class class class wbr 4044   dom cdm 4675   ` cfv 5271  (class class class)co 5944    ^pm cpm 6736   CCcc 7923   ZZcz 9372   ZZ>=cuz 9648   Topctop 14469  TopOnctopon 14482   ~~> tclm 14659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pm 6738  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-top 14470  df-topon 14483  df-lm 14662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator