![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7645 |
. 2
![]() ![]() ![]() ![]() | |
2 | 0re 7684 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1re 7683 |
. . 3
![]() ![]() ![]() ![]() | |
4 | ltxrlt 7748 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | mp2an 420 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | mpbir 145 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7630 ax-resscn 7631 ax-1re 7633 ax-addrcl 7636 ax-0lt1 7645 ax-rnegex 7648 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-xp 4503 df-pnf 7720 df-mnf 7721 df-ltxr 7723 |
This theorem is referenced by: ine0 8069 0le1 8156 inelr 8258 1ap0 8264 eqneg 8399 ltp1 8506 ltm1 8508 recgt0 8512 mulgt1 8525 reclt1 8558 recgt1 8559 recgt1i 8560 recp1lt1 8561 recreclt 8562 sup3exmid 8619 nnge1 8647 nngt0 8649 0nnn 8651 nnrecgt0 8662 0ne1 8691 2pos 8715 3pos 8718 4pos 8721 5pos 8724 6pos 8725 7pos 8726 8pos 8727 9pos 8728 neg1lt0 8732 halflt1 8835 nn0p1gt0 8904 elnnnn0c 8920 elnnz1 8975 recnz 9042 1rp 9341 divlt1lt 9404 divle1le 9405 ledivge1le 9406 nnledivrp 9440 fz10 9713 fzpreddisj 9738 elfz1b 9757 modqfrac 9997 expgt1 10218 ltexp2a 10232 leexp2a 10233 expnbnd 10302 expnlbnd 10303 expnlbnd2 10304 expcanlem 10349 expcan 10350 bcn1 10391 resqrexlem1arp 10663 mulcn2 10967 reccn2ap 10968 georeclim 11168 geoisumr 11173 cos1bnd 11311 sin01gt0 11313 sincos1sgn 11316 nnoddm1d2 11449 dvdsnprmd 11646 divdenle 11714 mopnex 12488 |
Copyright terms: Public domain | W3C validator |