| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8033 |
. 2
| |
| 2 | 0re 8074 |
. . 3
| |
| 3 | 1re 8073 |
. . 3
| |
| 4 | ltxrlt 8140 |
. . 3
| |
| 5 | 2, 3, 4 | mp2an 426 |
. 2
|
| 6 | 1, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-0lt1 8033 ax-rnegex 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-pnf 8111 df-mnf 8112 df-ltxr 8114 |
| This theorem is referenced by: ine0 8468 0le1 8556 inelr 8659 1ap0 8665 eqneg 8807 ltp1 8919 ltm1 8921 recgt0 8925 mulgt1 8938 reclt1 8971 recgt1 8972 recgt1i 8973 recp1lt1 8974 recreclt 8975 sup3exmid 9032 nnge1 9061 nngt0 9063 0nnn 9065 nnrecgt0 9076 0ne1 9105 2pos 9129 3pos 9132 4pos 9135 5pos 9138 6pos 9139 7pos 9140 8pos 9141 9pos 9142 neg1lt0 9146 halflt1 9256 nn0p1gt0 9326 elnnnn0c 9342 elnnz1 9397 recnz 9468 1rp 9781 divlt1lt 9848 divle1le 9849 ledivge1le 9850 nnledivrp 9890 fz10 10170 fzpreddisj 10195 elfz1b 10214 modqfrac 10484 expgt1 10724 ltexp2a 10738 leexp2a 10739 expnbnd 10810 expnlbnd 10811 expnlbnd2 10812 nn0ltexp2 10856 expcanlem 10862 expcan 10863 bcn1 10905 resqrexlem1arp 11349 mulcn2 11656 reccn2ap 11657 georeclim 11857 geoisumr 11862 cos1bnd 12103 sin01gt0 12106 sincos1sgn 12109 p1modz1 12138 nnoddm1d2 12254 dvdsnprmd 12480 divdenle 12552 plendxnocndx 13079 znidomb 14453 mopnex 15010 ivthdichlem 15156 reeff1olem 15276 cos02pilt1 15356 rplogcl 15384 cxplt 15421 cxple 15422 ltexp2 15446 mersenne 15502 perfectlem2 15505 apdiff 16024 |
| Copyright terms: Public domain | W3C validator |