![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7980 |
. 2
![]() ![]() ![]() ![]() | |
2 | 0re 8021 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1re 8020 |
. . 3
![]() ![]() ![]() ![]() | |
4 | ltxrlt 8087 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | mp2an 426 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0lt1 7980 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-ltxr 8061 |
This theorem is referenced by: ine0 8415 0le1 8502 inelr 8605 1ap0 8611 eqneg 8753 ltp1 8865 ltm1 8867 recgt0 8871 mulgt1 8884 reclt1 8917 recgt1 8918 recgt1i 8919 recp1lt1 8920 recreclt 8921 sup3exmid 8978 nnge1 9007 nngt0 9009 0nnn 9011 nnrecgt0 9022 0ne1 9051 2pos 9075 3pos 9078 4pos 9081 5pos 9084 6pos 9085 7pos 9086 8pos 9087 9pos 9088 neg1lt0 9092 halflt1 9202 nn0p1gt0 9272 elnnnn0c 9288 elnnz1 9343 recnz 9413 1rp 9726 divlt1lt 9793 divle1le 9794 ledivge1le 9795 nnledivrp 9835 fz10 10115 fzpreddisj 10140 elfz1b 10159 modqfrac 10411 expgt1 10651 ltexp2a 10665 leexp2a 10666 expnbnd 10737 expnlbnd 10738 expnlbnd2 10739 nn0ltexp2 10783 expcanlem 10789 expcan 10790 bcn1 10832 resqrexlem1arp 11152 mulcn2 11458 reccn2ap 11459 georeclim 11659 geoisumr 11664 cos1bnd 11905 sin01gt0 11908 sincos1sgn 11911 p1modz1 11940 nnoddm1d2 12054 dvdsnprmd 12266 divdenle 12338 znidomb 14157 mopnex 14684 ivthdichlem 14830 reeff1olem 14947 cos02pilt1 15027 rplogcl 15055 cxplt 15091 cxple 15092 ltexp2 15115 apdiff 15608 |
Copyright terms: Public domain | W3C validator |