| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8105 |
. 2
| |
| 2 | 0re 8146 |
. . 3
| |
| 3 | 1re 8145 |
. . 3
| |
| 4 | ltxrlt 8212 |
. . 3
| |
| 5 | 2, 3, 4 | mp2an 426 |
. 2
|
| 6 | 1, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-0lt1 8105 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-ltxr 8186 |
| This theorem is referenced by: ine0 8540 0le1 8628 inelr 8731 1ap0 8737 eqneg 8879 ltp1 8991 ltm1 8993 recgt0 8997 mulgt1 9010 reclt1 9043 recgt1 9044 recgt1i 9045 recp1lt1 9046 recreclt 9047 sup3exmid 9104 nnge1 9133 nngt0 9135 0nnn 9137 nnrecgt0 9148 0ne1 9177 2pos 9201 3pos 9204 4pos 9207 5pos 9210 6pos 9211 7pos 9212 8pos 9213 9pos 9214 neg1lt0 9218 halflt1 9328 nn0p1gt0 9398 elnnnn0c 9414 elnnz1 9469 recnz 9540 1rp 9853 divlt1lt 9920 divle1le 9921 ledivge1le 9922 nnledivrp 9962 fz10 10242 fzpreddisj 10267 elfz1b 10286 modqfrac 10559 expgt1 10799 ltexp2a 10813 leexp2a 10814 expnbnd 10885 expnlbnd 10886 expnlbnd2 10887 nn0ltexp2 10931 expcanlem 10937 expcan 10938 bcn1 10980 s2fv0g 11319 resqrexlem1arp 11516 mulcn2 11823 reccn2ap 11824 georeclim 12024 geoisumr 12029 cos1bnd 12270 sin01gt0 12273 sincos1sgn 12276 p1modz1 12305 nnoddm1d2 12421 dvdsnprmd 12647 divdenle 12719 plendxnocndx 13247 znidomb 14622 mopnex 15179 ivthdichlem 15325 reeff1olem 15445 cos02pilt1 15525 rplogcl 15553 cxplt 15590 cxple 15591 ltexp2 15615 mersenne 15671 perfectlem2 15674 apdiff 16416 |
| Copyright terms: Public domain | W3C validator |