Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7832 | . 2 | |
2 | 0re 7872 | . . 3 | |
3 | 1re 7871 | . . 3 | |
4 | ltxrlt 7937 | . . 3 | |
5 | 2, 3, 4 | mp2an 423 | . 2 |
6 | 1, 5 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2128 class class class wbr 3965 cr 7725 cc0 7726 c1 7727 cltrr 7730 clt 7906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1re 7820 ax-addrcl 7823 ax-0lt1 7832 ax-rnegex 7835 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4591 df-pnf 7908 df-mnf 7909 df-ltxr 7911 |
This theorem is referenced by: ine0 8263 0le1 8350 inelr 8453 1ap0 8459 eqneg 8599 ltp1 8709 ltm1 8711 recgt0 8715 mulgt1 8728 reclt1 8761 recgt1 8762 recgt1i 8763 recp1lt1 8764 recreclt 8765 sup3exmid 8822 nnge1 8850 nngt0 8852 0nnn 8854 nnrecgt0 8865 0ne1 8894 2pos 8918 3pos 8921 4pos 8924 5pos 8927 6pos 8928 7pos 8929 8pos 8930 9pos 8931 neg1lt0 8935 halflt1 9044 nn0p1gt0 9113 elnnnn0c 9129 elnnz1 9184 recnz 9251 1rp 9557 divlt1lt 9624 divle1le 9625 ledivge1le 9626 nnledivrp 9666 fz10 9941 fzpreddisj 9966 elfz1b 9985 modqfrac 10229 expgt1 10450 ltexp2a 10464 leexp2a 10465 expnbnd 10534 expnlbnd 10535 expnlbnd2 10536 expcanlem 10582 expcan 10583 bcn1 10625 resqrexlem1arp 10898 mulcn2 11202 reccn2ap 11203 georeclim 11403 geoisumr 11408 cos1bnd 11649 sin01gt0 11651 sincos1sgn 11654 p1modz1 11683 nnoddm1d2 11793 dvdsnprmd 11993 divdenle 12062 mopnex 12876 reeff1olem 13063 cos02pilt1 13143 rplogcl 13171 cxplt 13207 cxple 13208 apdiff 13590 |
Copyright terms: Public domain | W3C validator |