| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8031 |
. 2
| |
| 2 | 0re 8072 |
. . 3
| |
| 3 | 1re 8071 |
. . 3
| |
| 4 | ltxrlt 8138 |
. . 3
| |
| 5 | 2, 3, 4 | mp2an 426 |
. 2
|
| 6 | 1, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-0lt1 8031 ax-rnegex 8034 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-pnf 8109 df-mnf 8110 df-ltxr 8112 |
| This theorem is referenced by: ine0 8466 0le1 8554 inelr 8657 1ap0 8663 eqneg 8805 ltp1 8917 ltm1 8919 recgt0 8923 mulgt1 8936 reclt1 8969 recgt1 8970 recgt1i 8971 recp1lt1 8972 recreclt 8973 sup3exmid 9030 nnge1 9059 nngt0 9061 0nnn 9063 nnrecgt0 9074 0ne1 9103 2pos 9127 3pos 9130 4pos 9133 5pos 9136 6pos 9137 7pos 9138 8pos 9139 9pos 9140 neg1lt0 9144 halflt1 9254 nn0p1gt0 9324 elnnnn0c 9340 elnnz1 9395 recnz 9466 1rp 9779 divlt1lt 9846 divle1le 9847 ledivge1le 9848 nnledivrp 9888 fz10 10168 fzpreddisj 10193 elfz1b 10212 modqfrac 10482 expgt1 10722 ltexp2a 10736 leexp2a 10737 expnbnd 10808 expnlbnd 10809 expnlbnd2 10810 nn0ltexp2 10854 expcanlem 10860 expcan 10861 bcn1 10903 resqrexlem1arp 11316 mulcn2 11623 reccn2ap 11624 georeclim 11824 geoisumr 11829 cos1bnd 12070 sin01gt0 12073 sincos1sgn 12076 p1modz1 12105 nnoddm1d2 12221 dvdsnprmd 12447 divdenle 12519 plendxnocndx 13046 znidomb 14420 mopnex 14977 ivthdichlem 15123 reeff1olem 15243 cos02pilt1 15323 rplogcl 15351 cxplt 15388 cxple 15389 ltexp2 15413 mersenne 15469 perfectlem2 15472 apdiff 15987 |
| Copyright terms: Public domain | W3C validator |