Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version |
Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
0lt1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-0lt1 7855 | . 2 | |
2 | 0re 7895 | . . 3 | |
3 | 1re 7894 | . . 3 | |
4 | ltxrlt 7960 | . . 3 | |
5 | 2, 3, 4 | mp2an 423 | . 2 |
6 | 1, 5 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2136 class class class wbr 3981 cr 7748 cc0 7749 c1 7750 cltrr 7753 clt 7929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-0lt1 7855 ax-rnegex 7858 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-pnf 7931 df-mnf 7932 df-ltxr 7934 |
This theorem is referenced by: ine0 8288 0le1 8375 inelr 8478 1ap0 8484 eqneg 8624 ltp1 8735 ltm1 8737 recgt0 8741 mulgt1 8754 reclt1 8787 recgt1 8788 recgt1i 8789 recp1lt1 8790 recreclt 8791 sup3exmid 8848 nnge1 8876 nngt0 8878 0nnn 8880 nnrecgt0 8891 0ne1 8920 2pos 8944 3pos 8947 4pos 8950 5pos 8953 6pos 8954 7pos 8955 8pos 8956 9pos 8957 neg1lt0 8961 halflt1 9070 nn0p1gt0 9139 elnnnn0c 9155 elnnz1 9210 recnz 9280 1rp 9589 divlt1lt 9656 divle1le 9657 ledivge1le 9658 nnledivrp 9698 fz10 9977 fzpreddisj 10002 elfz1b 10021 modqfrac 10268 expgt1 10489 ltexp2a 10503 leexp2a 10504 expnbnd 10574 expnlbnd 10575 expnlbnd2 10576 nn0ltexp2 10619 expcanlem 10624 expcan 10625 bcn1 10667 resqrexlem1arp 10943 mulcn2 11249 reccn2ap 11250 georeclim 11450 geoisumr 11455 cos1bnd 11696 sin01gt0 11698 sincos1sgn 11701 p1modz1 11730 nnoddm1d2 11843 dvdsnprmd 12053 divdenle 12125 mopnex 13105 reeff1olem 13292 cos02pilt1 13372 rplogcl 13400 cxplt 13436 cxple 13437 ltexp2 13460 apdiff 13887 |
Copyright terms: Public domain | W3C validator |