| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0lt1 | Unicode version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-0lt1 8066 |
. 2
| |
| 2 | 0re 8107 |
. . 3
| |
| 3 | 1re 8106 |
. . 3
| |
| 4 | ltxrlt 8173 |
. . 3
| |
| 5 | 2, 3, 4 | mp2an 426 |
. 2
|
| 6 | 1, 5 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-pnf 8144 df-mnf 8145 df-ltxr 8147 |
| This theorem is referenced by: ine0 8501 0le1 8589 inelr 8692 1ap0 8698 eqneg 8840 ltp1 8952 ltm1 8954 recgt0 8958 mulgt1 8971 reclt1 9004 recgt1 9005 recgt1i 9006 recp1lt1 9007 recreclt 9008 sup3exmid 9065 nnge1 9094 nngt0 9096 0nnn 9098 nnrecgt0 9109 0ne1 9138 2pos 9162 3pos 9165 4pos 9168 5pos 9171 6pos 9172 7pos 9173 8pos 9174 9pos 9175 neg1lt0 9179 halflt1 9289 nn0p1gt0 9359 elnnnn0c 9375 elnnz1 9430 recnz 9501 1rp 9814 divlt1lt 9881 divle1le 9882 ledivge1le 9883 nnledivrp 9923 fz10 10203 fzpreddisj 10228 elfz1b 10247 modqfrac 10519 expgt1 10759 ltexp2a 10773 leexp2a 10774 expnbnd 10845 expnlbnd 10846 expnlbnd2 10847 nn0ltexp2 10891 expcanlem 10897 expcan 10898 bcn1 10940 resqrexlem1arp 11431 mulcn2 11738 reccn2ap 11739 georeclim 11939 geoisumr 11944 cos1bnd 12185 sin01gt0 12188 sincos1sgn 12191 p1modz1 12220 nnoddm1d2 12336 dvdsnprmd 12562 divdenle 12634 plendxnocndx 13161 znidomb 14535 mopnex 15092 ivthdichlem 15238 reeff1olem 15358 cos02pilt1 15438 rplogcl 15466 cxplt 15503 cxple 15504 ltexp2 15528 mersenne 15584 perfectlem2 15587 apdiff 16189 |
| Copyright terms: Public domain | W3C validator |