ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letri3d Unicode version

Theorem letri3d 8135
Description: Tightness of real apartness. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
letri3d  |-  ( ph  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )

Proof of Theorem letri3d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 letri3 8100 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4029   RRcr 7871    <_ cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by:  ltntri  8147  add20  8493  msq11  8921  squeeze0  8923  suprzclex  9415  exbtwnz  10319  flid  10353  expcan  10787  dfabsmax  11361  sumsnf  11552  prodsnf  11735  zssinfcl  12085  gcd0id  12116  gcdneg  12119  gcdaddm  12121  gcdzeq  12159  lcmneg  12212  coprmgcdb  12226  qredeq  12234  pw2dvdseu  12306  pcidlem  12461  pcgcd1  12466  4sqlem17  12545  zabsle1  15115  refeq  15518
  Copyright terms: Public domain W3C validator