| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nltled | Unicode version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| ltd.1 | 
 | 
| ltd.2 | 
 | 
| nltled.1 | 
 | 
| Ref | Expression | 
|---|---|
| nltled | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nltled.1 | 
. 2
 | |
| 2 | ltd.1 | 
. . 3
 | |
| 3 | ltd.2 | 
. . 3
 | |
| 4 | 2, 3 | lenltd 8144 | 
. 2
 | 
| 5 | 1, 4 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-xr 8065 df-le 8067 | 
| This theorem is referenced by: ltntri 8154 suprubex 8978 infregelbex 9672 zsupcl 10321 zssinfcl 10322 infssuzledc 10324 seqf1oglem1 10611 cvgratz 11697 bitsfzolem 12118 dvdslegcd 12131 pw2dvdseulemle 12335 gsumfzval 13034 gsumfzcl 13131 gsumfzreidx 13467 gsumfzsubmcl 13468 gsumfzmptfidmadd 13469 gsumfzmhm 13473 gsumfzfsum 14144 dedekindeulemuub 14853 dedekindeulemlu 14857 suplociccex 14861 dedekindicclemuub 14862 dedekindicclemlu 14866 ivthinclemlopn 14872 ivthinclemuopn 14874 refeq 15672 | 
| Copyright terms: Public domain | W3C validator |