![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nltled | Unicode version |
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
nltled.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nltled |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltled.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ltd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | lenltd 8137 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbird 167 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-xr 8058 df-le 8060 |
This theorem is referenced by: ltntri 8147 suprubex 8970 infregelbex 9663 seqf1oglem1 10590 cvgratz 11675 zsupcl 12084 zssinfcl 12085 infssuzledc 12087 dvdslegcd 12101 pw2dvdseulemle 12305 gsumfzval 12974 gsumfzcl 13071 gsumfzreidx 13407 gsumfzsubmcl 13408 gsumfzmptfidmadd 13409 gsumfzmhm 13413 gsumfzfsum 14076 dedekindeulemuub 14771 dedekindeulemlu 14775 suplociccex 14779 dedekindicclemuub 14780 dedekindicclemlu 14784 ivthinclemlopn 14790 ivthinclemuopn 14792 refeq 15518 |
Copyright terms: Public domain | W3C validator |