| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltled | Unicode version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| nltled.1 |
|
| Ref | Expression |
|---|---|
| nltled |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 |
. 2
| |
| 2 | ltd.1 |
. . 3
| |
| 3 | ltd.2 |
. . 3
| |
| 4 | 2, 3 | lenltd 8190 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-xr 8111 df-le 8113 |
| This theorem is referenced by: ltntri 8200 suprubex 9024 infregelbex 9719 zsupcl 10374 zssinfcl 10375 infssuzledc 10377 seqf1oglem1 10664 cvgratz 11843 bitsfzolem 12265 bitsmod 12267 dvdslegcd 12285 pw2dvdseulemle 12489 gsumfzval 13223 gsumfzcl 13331 gsumfzreidx 13673 gsumfzsubmcl 13674 gsumfzmptfidmadd 13675 gsumfzmhm 13679 gsumfzfsum 14350 dedekindeulemuub 15089 dedekindeulemlu 15093 suplociccex 15097 dedekindicclemuub 15098 dedekindicclemlu 15102 ivthinclemlopn 15108 ivthinclemuopn 15110 refeq 15967 |
| Copyright terms: Public domain | W3C validator |