ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltled Unicode version

Theorem nltled 8192
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
nltled.1  |-  ( ph  ->  -.  B  <  A
)
Assertion
Ref Expression
nltled  |-  ( ph  ->  A  <_  B )

Proof of Theorem nltled
StepHypRef Expression
1 nltled.1 . 2  |-  ( ph  ->  -.  B  <  A
)
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
42, 3lenltd 8189 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
51, 4mpbird 167 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2175   class class class wbr 4043   RRcr 7923    < clt 8106    <_ cle 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-cnv 4682  df-xr 8110  df-le 8112
This theorem is referenced by:  ltntri  8199  suprubex  9023  infregelbex  9718  zsupcl  10372  zssinfcl  10373  infssuzledc  10375  seqf1oglem1  10662  cvgratz  11814  bitsfzolem  12236  bitsmod  12238  dvdslegcd  12256  pw2dvdseulemle  12460  gsumfzval  13194  gsumfzcl  13302  gsumfzreidx  13644  gsumfzsubmcl  13645  gsumfzmptfidmadd  13646  gsumfzmhm  13650  gsumfzfsum  14321  dedekindeulemuub  15060  dedekindeulemlu  15064  suplociccex  15068  dedekindicclemuub  15069  dedekindicclemlu  15073  ivthinclemlopn  15079  ivthinclemuopn  15081  refeq  15929
  Copyright terms: Public domain W3C validator