| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltled | Unicode version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| nltled.1 |
|
| Ref | Expression |
|---|---|
| nltled |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 |
. 2
| |
| 2 | ltd.1 |
. . 3
| |
| 3 | ltd.2 |
. . 3
| |
| 4 | 2, 3 | lenltd 8147 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-xr 8068 df-le 8070 |
| This theorem is referenced by: ltntri 8157 suprubex 8981 infregelbex 9675 zsupcl 10324 zssinfcl 10325 infssuzledc 10327 seqf1oglem1 10614 cvgratz 11700 bitsfzolem 12122 bitsmod 12124 dvdslegcd 12142 pw2dvdseulemle 12346 gsumfzval 13060 gsumfzcl 13157 gsumfzreidx 13493 gsumfzsubmcl 13494 gsumfzmptfidmadd 13495 gsumfzmhm 13499 gsumfzfsum 14170 dedekindeulemuub 14879 dedekindeulemlu 14883 suplociccex 14887 dedekindicclemuub 14888 dedekindicclemlu 14892 ivthinclemlopn 14898 ivthinclemuopn 14900 refeq 15699 |
| Copyright terms: Public domain | W3C validator |