ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltled Unicode version

Theorem nltled 7507
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
nltled.1  |-  ( ph  ->  -.  B  <  A
)
Assertion
Ref Expression
nltled  |-  ( ph  ->  A  <_  B )

Proof of Theorem nltled
StepHypRef Expression
1 nltled.1 . 2  |-  ( ph  ->  -.  B  <  A
)
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
42, 3lenltd 7504 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
51, 4mpbird 165 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1434   class class class wbr 3811   RRcr 7252    < clt 7425    <_ cle 7426
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-xp 4407  df-cnv 4409  df-xr 7429  df-le 7431
This theorem is referenced by:  suprubex  8306  expival  9794  zsupcl  10723  zssinfcl  10724  infssuzledc  10726  dvdslegcd  10736  pw2dvdseulemle  10925
  Copyright terms: Public domain W3C validator