| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltled | Unicode version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| nltled.1 |
|
| Ref | Expression |
|---|---|
| nltled |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 |
. 2
| |
| 2 | ltd.1 |
. . 3
| |
| 3 | ltd.2 |
. . 3
| |
| 4 | 2, 3 | lenltd 8260 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-xr 8181 df-le 8183 |
| This theorem is referenced by: ltntri 8270 suprubex 9094 infregelbex 9789 zsupcl 10446 zssinfcl 10447 infssuzledc 10449 seqf1oglem1 10736 cvgratz 12038 bitsfzolem 12460 bitsmod 12462 dvdslegcd 12480 pw2dvdseulemle 12684 gsumfzval 13419 gsumfzcl 13527 gsumfzreidx 13869 gsumfzsubmcl 13870 gsumfzmptfidmadd 13871 gsumfzmhm 13875 gsumfzfsum 14546 dedekindeulemuub 15285 dedekindeulemlu 15289 suplociccex 15293 dedekindicclemuub 15294 dedekindicclemlu 15298 ivthinclemlopn 15304 ivthinclemuopn 15306 refeq 16355 |
| Copyright terms: Public domain | W3C validator |