| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nltled | Unicode version | ||
| Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| ltd.1 |
|
| ltd.2 |
|
| nltled.1 |
|
| Ref | Expression |
|---|---|
| nltled |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltled.1 |
. 2
| |
| 2 | ltd.1 |
. . 3
| |
| 3 | ltd.2 |
. . 3
| |
| 4 | 2, 3 | lenltd 8189 |
. 2
|
| 5 | 1, 4 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-xr 8110 df-le 8112 |
| This theorem is referenced by: ltntri 8199 suprubex 9023 infregelbex 9718 zsupcl 10372 zssinfcl 10373 infssuzledc 10375 seqf1oglem1 10662 cvgratz 11814 bitsfzolem 12236 bitsmod 12238 dvdslegcd 12256 pw2dvdseulemle 12460 gsumfzval 13194 gsumfzcl 13302 gsumfzreidx 13644 gsumfzsubmcl 13645 gsumfzmptfidmadd 13646 gsumfzmhm 13650 gsumfzfsum 14321 dedekindeulemuub 15060 dedekindeulemlu 15064 suplociccex 15068 dedekindicclemuub 15069 dedekindicclemlu 15073 ivthinclemlopn 15079 ivthinclemuopn 15081 refeq 15929 |
| Copyright terms: Public domain | W3C validator |