ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltled Unicode version

Theorem nltled 8263
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
nltled.1  |-  ( ph  ->  -.  B  <  A
)
Assertion
Ref Expression
nltled  |-  ( ph  ->  A  <_  B )

Proof of Theorem nltled
StepHypRef Expression
1 nltled.1 . 2  |-  ( ph  ->  -.  B  <  A
)
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
42, 3lenltd 8260 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
51, 4mpbird 167 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2200   class class class wbr 4082   RRcr 7994    < clt 8177    <_ cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-xr 8181  df-le 8183
This theorem is referenced by:  ltntri  8270  suprubex  9094  infregelbex  9789  zsupcl  10446  zssinfcl  10447  infssuzledc  10449  seqf1oglem1  10736  cvgratz  12038  bitsfzolem  12460  bitsmod  12462  dvdslegcd  12480  pw2dvdseulemle  12684  gsumfzval  13419  gsumfzcl  13527  gsumfzreidx  13869  gsumfzsubmcl  13870  gsumfzmptfidmadd  13871  gsumfzmhm  13875  gsumfzfsum  14546  dedekindeulemuub  15285  dedekindeulemlu  15289  suplociccex  15293  dedekindicclemuub  15294  dedekindicclemlu  15298  ivthinclemlopn  15304  ivthinclemuopn  15306  refeq  16355
  Copyright terms: Public domain W3C validator