ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nltled Unicode version

Theorem nltled 8142
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
nltled.1  |-  ( ph  ->  -.  B  <  A
)
Assertion
Ref Expression
nltled  |-  ( ph  ->  A  <_  B )

Proof of Theorem nltled
StepHypRef Expression
1 nltled.1 . 2  |-  ( ph  ->  -.  B  <  A
)
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
42, 3lenltd 8139 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
51, 4mpbird 167 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056    <_ cle 8057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-xr 8060  df-le 8062
This theorem is referenced by:  ltntri  8149  suprubex  8972  infregelbex  9666  seqf1oglem1  10593  cvgratz  11678  zsupcl  12087  zssinfcl  12088  infssuzledc  12090  dvdslegcd  12104  pw2dvdseulemle  12308  gsumfzval  12977  gsumfzcl  13074  gsumfzreidx  13410  gsumfzsubmcl  13411  gsumfzmptfidmadd  13412  gsumfzmhm  13416  gsumfzfsum  14087  dedekindeulemuub  14796  dedekindeulemlu  14800  suplociccex  14804  dedekindicclemuub  14805  dedekindicclemlu  14809  ivthinclemlopn  14815  ivthinclemuopn  14817  refeq  15588
  Copyright terms: Public domain W3C validator