ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltntri GIF version

Theorem ltntri 8147
Description: Negative trichotomy property for real numbers. It is well known that we cannot prove real number trichotomy, 𝐴 < 𝐵𝐴 = 𝐵𝐵 < 𝐴. Does that mean there is a pair of real numbers where none of those hold (that is, where we can refute each of those three relationships)? Actually, no, as shown here. This is another example of distinguishing between being unable to prove something, or being able to refute it. (Contributed by Jim Kingdon, 13-Aug-2023.)
Assertion
Ref Expression
ltntri ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴))

Proof of Theorem ltntri
StepHypRef Expression
1 simpll 527 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → 𝐴 ∈ ℝ)
2 simplr 528 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → 𝐵 ∈ ℝ)
3 simpr3 1007 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → ¬ 𝐵 < 𝐴)
41, 2, 3nltled 8140 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → 𝐴𝐵)
5 simpr1 1005 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → ¬ 𝐴 < 𝐵)
62, 1, 5nltled 8140 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → 𝐵𝐴)
71, 2letri3d 8135 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
84, 6, 7mpbir2and 946 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → 𝐴 = 𝐵)
9 simpr2 1006 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) → ¬ 𝐴 = 𝐵)
108, 9pm2.65da 662 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  cr 7871   < clt 8054  cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator