ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o3 Unicode version

Theorem mapsnf1o3 6663
Description: Explicit bijection in the reverse of mapsnf1o2 6662. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsnf1o3.f  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
Assertion
Ref Expression
mapsnf1o3  |-  F : B
-1-1-onto-> ( B  ^m  S )
Distinct variable groups:    y, B    y, S    y, X
Allowed substitution hint:    F( y)

Proof of Theorem mapsnf1o3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4  |-  S  =  { X }
2 mapsncnv.b . . . 4  |-  B  e. 
_V
3 mapsncnv.x . . . 4  |-  X  e. 
_V
4 eqid 2165 . . . 4  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  =  ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
51, 2, 3, 4mapsnf1o2 6662 . . 3  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) ) : ( B  ^m  S ) -1-1-onto-> B
6 f1ocnv 5445 . . 3  |-  ( ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : ( B  ^m  S ) -1-1-onto-> B  ->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
75, 6ax-mp 5 . 2  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S )
8 mapsnf1o3.f . . . 4  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
91, 2, 3, 4mapsncnv 6661 . . . 4  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) )  =  ( y  e.  B  |->  ( S  X.  { y } ) )
108, 9eqtr4i 2189 . . 3  |-  F  =  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
11 f1oeq1 5421 . . 3  |-  ( F  =  `' ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  ->  ( F : B
-1-1-onto-> ( B  ^m  S )  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) ) )
1210, 11ax-mp 5 . 2  |-  ( F : B -1-1-onto-> ( B  ^m  S
)  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
137, 12mpbir 145 1  |-  F : B
-1-1-onto-> ( B  ^m  S )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576    |-> cmpt 4043    X. cxp 4602   `'ccnv 4603   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842    ^m cmap 6614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator