ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o3 Unicode version

Theorem mapsnf1o3 6753
Description: Explicit bijection in the reverse of mapsnf1o2 6752. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsnf1o3.f  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
Assertion
Ref Expression
mapsnf1o3  |-  F : B
-1-1-onto-> ( B  ^m  S )
Distinct variable groups:    y, B    y, S    y, X
Allowed substitution hint:    F( y)

Proof of Theorem mapsnf1o3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4  |-  S  =  { X }
2 mapsncnv.b . . . 4  |-  B  e. 
_V
3 mapsncnv.x . . . 4  |-  X  e. 
_V
4 eqid 2193 . . . 4  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  =  ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
51, 2, 3, 4mapsnf1o2 6752 . . 3  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) ) : ( B  ^m  S ) -1-1-onto-> B
6 f1ocnv 5514 . . 3  |-  ( ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : ( B  ^m  S ) -1-1-onto-> B  ->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
75, 6ax-mp 5 . 2  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S )
8 mapsnf1o3.f . . . 4  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
91, 2, 3, 4mapsncnv 6751 . . . 4  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) )  =  ( y  e.  B  |->  ( S  X.  { y } ) )
108, 9eqtr4i 2217 . . 3  |-  F  =  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
11 f1oeq1 5489 . . 3  |-  ( F  =  `' ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  ->  ( F : B
-1-1-onto-> ( B  ^m  S )  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) ) )
1210, 11ax-mp 5 . 2  |-  ( F : B -1-1-onto-> ( B  ^m  S
)  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
137, 12mpbir 146 1  |-  F : B
-1-1-onto-> ( B  ^m  S )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3619    |-> cmpt 4091    X. cxp 4658   `'ccnv 4659   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919    ^m cmap 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator