ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o3 Unicode version

Theorem mapsnf1o3 6644
Description: Explicit bijection in the reverse of mapsnf1o2 6643. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsnf1o3.f  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
Assertion
Ref Expression
mapsnf1o3  |-  F : B
-1-1-onto-> ( B  ^m  S )
Distinct variable groups:    y, B    y, S    y, X
Allowed substitution hint:    F( y)

Proof of Theorem mapsnf1o3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4  |-  S  =  { X }
2 mapsncnv.b . . . 4  |-  B  e. 
_V
3 mapsncnv.x . . . 4  |-  X  e. 
_V
4 eqid 2157 . . . 4  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  =  ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
51, 2, 3, 4mapsnf1o2 6643 . . 3  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) ) : ( B  ^m  S ) -1-1-onto-> B
6 f1ocnv 5429 . . 3  |-  ( ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : ( B  ^m  S ) -1-1-onto-> B  ->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
75, 6ax-mp 5 . 2  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S )
8 mapsnf1o3.f . . . 4  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
91, 2, 3, 4mapsncnv 6642 . . . 4  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) )  =  ( y  e.  B  |->  ( S  X.  { y } ) )
108, 9eqtr4i 2181 . . 3  |-  F  =  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
11 f1oeq1 5405 . . 3  |-  ( F  =  `' ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  ->  ( F : B
-1-1-onto-> ( B  ^m  S )  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) ) )
1210, 11ax-mp 5 . 2  |-  ( F : B -1-1-onto-> ( B  ^m  S
)  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
137, 12mpbir 145 1  |-  F : B
-1-1-onto-> ( B  ^m  S )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1335    e. wcel 2128   _Vcvv 2712   {csn 3561    |-> cmpt 4027    X. cxp 4586   `'ccnv 4587   -1-1-onto->wf1o 5171   ` cfv 5172  (class class class)co 5826    ^m cmap 6595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-map 6597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator