ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o3 GIF version

Theorem mapsnf1o3 6521
Description: Explicit bijection in the reverse of mapsnf1o2 6520. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsnf1o3.f 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
Assertion
Ref Expression
mapsnf1o3 𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑆   𝑦,𝑋
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem mapsnf1o3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4 𝑆 = {𝑋}
2 mapsncnv.b . . . 4 𝐵 ∈ V
3 mapsncnv.x . . . 4 𝑋 ∈ V
4 eqid 2100 . . . 4 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)) = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
51, 2, 3, 4mapsnf1o2 6520 . . 3 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):(𝐵𝑚 𝑆)–1-1-onto𝐵
6 f1ocnv 5314 . . 3 ((𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):(𝐵𝑚 𝑆)–1-1-onto𝐵(𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵𝑚 𝑆))
75, 6ax-mp 7 . 2 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵𝑚 𝑆)
8 mapsnf1o3.f . . . 4 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
91, 2, 3, 4mapsncnv 6519 . . . 4 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)) = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
108, 9eqtr4i 2123 . . 3 𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
11 f1oeq1 5292 . . 3 (𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)) → (𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆) ↔ (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵𝑚 𝑆)))
1210, 11ax-mp 7 . 2 (𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆) ↔ (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵𝑚 𝑆))
137, 12mpbir 145 1 𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1299  wcel 1448  Vcvv 2641  {csn 3474  cmpt 3929   × cxp 4475  ccnv 4476  1-1-ontowf1o 5058  cfv 5059  (class class class)co 5706  𝑚 cmap 6472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-map 6474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator