ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsnf1o3 GIF version

Theorem mapsnf1o3 6844
Description: Explicit bijection in the reverse of mapsnf1o2 6843. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
mapsnf1o3.f 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
Assertion
Ref Expression
mapsnf1o3 𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆)
Distinct variable groups:   𝑦,𝐵   𝑦,𝑆   𝑦,𝑋
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem mapsnf1o3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4 𝑆 = {𝑋}
2 mapsncnv.b . . . 4 𝐵 ∈ V
3 mapsncnv.x . . . 4 𝑋 ∈ V
4 eqid 2229 . . . 4 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)) = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
51, 2, 3, 4mapsnf1o2 6843 . . 3 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):(𝐵𝑚 𝑆)–1-1-onto𝐵
6 f1ocnv 5585 . . 3 ((𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):(𝐵𝑚 𝑆)–1-1-onto𝐵(𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵𝑚 𝑆))
75, 6ax-mp 5 . 2 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵𝑚 𝑆)
8 mapsnf1o3.f . . . 4 𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
91, 2, 3, 4mapsncnv 6842 . . . 4 (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)) = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
108, 9eqtr4i 2253 . . 3 𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋))
11 f1oeq1 5560 . . 3 (𝐹 = (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)) → (𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆) ↔ (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵𝑚 𝑆)))
1210, 11ax-mp 5 . 2 (𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆) ↔ (𝑥 ∈ (𝐵𝑚 𝑆) ↦ (𝑥𝑋)):𝐵1-1-onto→(𝐵𝑚 𝑆))
137, 12mpbir 146 1 𝐹:𝐵1-1-onto→(𝐵𝑚 𝑆)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cmpt 4145   × cxp 4717  ccnv 4718  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6001  𝑚 cmap 6795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-map 6797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator