| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnf1o3 | GIF version | ||
| Description: Explicit bijection in the reverse of mapsnf1o2 6783. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsnf1o3.f | ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| Ref | Expression |
|---|---|
| mapsnf1o3 | ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
| 2 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 4 | eqid 2205 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
| 5 | 1, 2, 3, 4 | mapsnf1o2 6783 | . . 3 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| 6 | f1ocnv 5535 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 → ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
| 8 | mapsnf1o3.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) | |
| 9 | 1, 2, 3, 4 | mapsncnv 6782 | . . . 4 ⊢ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 10 | 8, 9 | eqtr4i 2229 | . . 3 ⊢ 𝐹 = ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
| 11 | f1oeq1 5510 | . . 3 ⊢ (𝐹 = ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) → (𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆)) |
| 13 | 7, 12 | mpbir 146 | 1 ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2176 Vcvv 2772 {csn 3633 ↦ cmpt 4105 × cxp 4673 ◡ccnv 4674 –1-1-onto→wf1o 5270 ‘cfv 5271 (class class class)co 5944 ↑𝑚 cmap 6735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-map 6737 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |