| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mapsnf1o3 | GIF version | ||
| Description: Explicit bijection in the reverse of mapsnf1o2 6843. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapsncnv.s | ⊢ 𝑆 = {𝑋} |
| mapsncnv.b | ⊢ 𝐵 ∈ V |
| mapsncnv.x | ⊢ 𝑋 ∈ V |
| mapsnf1o3.f | ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| Ref | Expression |
|---|---|
| mapsnf1o3 | ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapsncnv.s | . . . 4 ⊢ 𝑆 = {𝑋} | |
| 2 | mapsncnv.b | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | mapsncnv.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 4 | eqid 2229 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) = (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) | |
| 5 | 1, 2, 3, 4 | mapsnf1o2 6843 | . . 3 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 |
| 6 | f1ocnv 5585 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):(𝐵 ↑𝑚 𝑆)–1-1-onto→𝐵 → ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆)) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
| 8 | mapsnf1o3.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) | |
| 9 | 1, 2, 3, 4 | mapsncnv 6842 | . . . 4 ⊢ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) = (𝑦 ∈ 𝐵 ↦ (𝑆 × {𝑦})) |
| 10 | 8, 9 | eqtr4i 2253 | . . 3 ⊢ 𝐹 = ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) |
| 11 | f1oeq1 5560 | . . 3 ⊢ (𝐹 = ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)) → (𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆))) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) ↔ ◡(𝑥 ∈ (𝐵 ↑𝑚 𝑆) ↦ (𝑥‘𝑋)):𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆)) |
| 13 | 7, 12 | mpbir 146 | 1 ⊢ 𝐹:𝐵–1-1-onto→(𝐵 ↑𝑚 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {csn 3666 ↦ cmpt 4145 × cxp 4717 ◡ccnv 4718 –1-1-onto→wf1o 5317 ‘cfv 5318 (class class class)co 6001 ↑𝑚 cmap 6795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-map 6797 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |