ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmsspw Unicode version

Theorem pmsspw 6649
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
pmsspw  |-  ( A 
^pm  B )  C_  ~P ( B  X.  A
)

Proof of Theorem pmsspw
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6617 . . . . . . 7  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
21elmpocl 6036 . . . . . 6  |-  ( f  e.  ( A  ^pm  B )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
3 elpmg 6630 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
42, 3syl 14 . . . . 5  |-  ( f  e.  ( A  ^pm  B )  ->  ( f  e.  ( A  ^pm  B
)  <->  ( Fun  f  /\  f  C_  ( B  X.  A ) ) ) )
54ibi 175 . . . 4  |-  ( f  e.  ( A  ^pm  B )  ->  ( Fun  f  /\  f  C_  ( B  X.  A ) ) )
65simprd 113 . . 3  |-  ( f  e.  ( A  ^pm  B )  ->  f  C_  ( B  X.  A
) )
7 velpw 3566 . . 3  |-  ( f  e.  ~P ( B  X.  A )  <->  f  C_  ( B  X.  A
) )
86, 7sylibr 133 . 2  |-  ( f  e.  ( A  ^pm  B )  ->  f  e.  ~P ( B  X.  A
) )
98ssriv 3146 1  |-  ( A 
^pm  B )  C_  ~P ( B  X.  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2136   {crab 2448   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559    X. cxp 4602   Fun wfun 5182  (class class class)co 5842    ^pm cpm 6615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pm 6617
This theorem is referenced by:  mapsspw  6650
  Copyright terms: Public domain W3C validator