ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmsspw Unicode version

Theorem pmsspw 6830
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
pmsspw  |-  ( A 
^pm  B )  C_  ~P ( B  X.  A
)

Proof of Theorem pmsspw
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6798 . . . . . . 7  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
21elmpocl 6200 . . . . . 6  |-  ( f  e.  ( A  ^pm  B )  ->  ( A  e.  _V  /\  B  e. 
_V ) )
3 elpmg 6811 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( f  e.  ( A  ^pm  B )  <->  ( Fun  f  /\  f  C_  ( B  X.  A
) ) ) )
42, 3syl 14 . . . . 5  |-  ( f  e.  ( A  ^pm  B )  ->  ( f  e.  ( A  ^pm  B
)  <->  ( Fun  f  /\  f  C_  ( B  X.  A ) ) ) )
54ibi 176 . . . 4  |-  ( f  e.  ( A  ^pm  B )  ->  ( Fun  f  /\  f  C_  ( B  X.  A ) ) )
65simprd 114 . . 3  |-  ( f  e.  ( A  ^pm  B )  ->  f  C_  ( B  X.  A
) )
7 velpw 3656 . . 3  |-  ( f  e.  ~P ( B  X.  A )  <->  f  C_  ( B  X.  A
) )
86, 7sylibr 134 . 2  |-  ( f  e.  ( A  ^pm  B )  ->  f  e.  ~P ( B  X.  A
) )
98ssriv 3228 1  |-  ( A 
^pm  B )  C_  ~P ( B  X.  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649    X. cxp 4717   Fun wfun 5312  (class class class)co 6001    ^pm cpm 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pm 6798
This theorem is referenced by:  mapsspw  6831
  Copyright terms: Public domain W3C validator