Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapsspw | GIF version |
Description: Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
mapsspw | ⊢ (𝐴 ↑𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsspm 6672 | . 2 ⊢ (𝐴 ↑𝑚 𝐵) ⊆ (𝐴 ↑pm 𝐵) | |
2 | pmsspw 6673 | . 2 ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
3 | 1, 2 | sstri 3162 | 1 ⊢ (𝐴 ↑𝑚 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3127 𝒫 cpw 3572 × cxp 4618 (class class class)co 5865 ↑𝑚 cmap 6638 ↑pm cpm 6639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-map 6640 df-pm 6641 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |