ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsspm Unicode version

Theorem mapsspm 6684
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
mapsspm  |-  ( A  ^m  B )  C_  ( A  ^pm  B )

Proof of Theorem mapsspm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 elmapex 6671 . . . 4  |-  ( f  e.  ( A  ^m  B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
21simprd 114 . . 3  |-  ( f  e.  ( A  ^m  B )  ->  B  e.  _V )
31simpld 112 . . 3  |-  ( f  e.  ( A  ^m  B )  ->  A  e.  _V )
4 elmapi 6672 . . 3  |-  ( f  e.  ( A  ^m  B )  ->  f : B --> A )
5 fpmg 6676 . . 3  |-  ( ( B  e.  _V  /\  A  e.  _V  /\  f : B --> A )  -> 
f  e.  ( A 
^pm  B ) )
62, 3, 4, 5syl3anc 1238 . 2  |-  ( f  e.  ( A  ^m  B )  ->  f  e.  ( A  ^pm  B
) )
76ssriv 3161 1  |-  ( A  ^m  B )  C_  ( A  ^pm  B )
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739    C_ wss 3131   -->wf 5214  (class class class)co 5877    ^m cmap 6650    ^pm cpm 6651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-map 6652  df-pm 6653
This theorem is referenced by:  mapsspw  6686
  Copyright terms: Public domain W3C validator