ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapsspm Unicode version

Theorem mapsspm 6819
Description: Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
Assertion
Ref Expression
mapsspm  |-  ( A  ^m  B )  C_  ( A  ^pm  B )

Proof of Theorem mapsspm
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 elmapex 6806 . . . 4  |-  ( f  e.  ( A  ^m  B )  ->  ( A  e.  _V  /\  B  e.  _V ) )
21simprd 114 . . 3  |-  ( f  e.  ( A  ^m  B )  ->  B  e.  _V )
31simpld 112 . . 3  |-  ( f  e.  ( A  ^m  B )  ->  A  e.  _V )
4 elmapi 6807 . . 3  |-  ( f  e.  ( A  ^m  B )  ->  f : B --> A )
5 fpmg 6811 . . 3  |-  ( ( B  e.  _V  /\  A  e.  _V  /\  f : B --> A )  -> 
f  e.  ( A 
^pm  B ) )
62, 3, 4, 5syl3anc 1271 . 2  |-  ( f  e.  ( A  ^m  B )  ->  f  e.  ( A  ^pm  B
) )
76ssriv 3228 1  |-  ( A  ^m  B )  C_  ( A  ^pm  B )
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799    C_ wss 3197   -->wf 5310  (class class class)co 5994    ^m cmap 6785    ^pm cpm 6786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-map 6787  df-pm 6788
This theorem is referenced by:  mapsspw  6821
  Copyright terms: Public domain W3C validator