ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd4g Unicode version

Theorem mnd4g 13376
Description: Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
mndcl.b  |-  B  =  ( Base `  G
)
mndcl.p  |-  .+  =  ( +g  `  G )
mnd4g.1  |-  ( ph  ->  G  e.  Mnd )
mnd4g.2  |-  ( ph  ->  X  e.  B )
mnd4g.3  |-  ( ph  ->  Y  e.  B )
mnd4g.4  |-  ( ph  ->  Z  e.  B )
mnd4g.5  |-  ( ph  ->  W  e.  B )
mnd4g.6  |-  ( ph  ->  ( Y  .+  Z
)  =  ( Z 
.+  Y ) )
Assertion
Ref Expression
mnd4g  |-  ( ph  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( ( X 
.+  Z )  .+  ( Y  .+  W ) ) )

Proof of Theorem mnd4g
StepHypRef Expression
1 mndcl.b . . . 4  |-  B  =  ( Base `  G
)
2 mndcl.p . . . 4  |-  .+  =  ( +g  `  G )
3 mnd4g.1 . . . 4  |-  ( ph  ->  G  e.  Mnd )
4 mnd4g.3 . . . 4  |-  ( ph  ->  Y  e.  B )
5 mnd4g.4 . . . 4  |-  ( ph  ->  Z  e.  B )
6 mnd4g.5 . . . 4  |-  ( ph  ->  W  e.  B )
7 mnd4g.6 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  =  ( Z 
.+  Y ) )
81, 2, 3, 4, 5, 6, 7mnd12g 13375 . . 3  |-  ( ph  ->  ( Y  .+  ( Z  .+  W ) )  =  ( Z  .+  ( Y  .+  W ) ) )
98oveq2d 5983 . 2  |-  ( ph  ->  ( X  .+  ( Y  .+  ( Z  .+  W ) ) )  =  ( X  .+  ( Z  .+  ( Y 
.+  W ) ) ) )
10 mnd4g.2 . . 3  |-  ( ph  ->  X  e.  B )
111, 2mndcl 13370 . . . 4  |-  ( ( G  e.  Mnd  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
123, 5, 6, 11syl3anc 1250 . . 3  |-  ( ph  ->  ( Z  .+  W
)  e.  B )
131, 2mndass 13371 . . 3  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  ( Z  .+  W
)  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( X 
.+  ( Y  .+  ( Z  .+  W ) ) ) )
143, 10, 4, 12, 13syl13anc 1252 . 2  |-  ( ph  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( X  .+  ( Y  .+  ( Z 
.+  W ) ) ) )
151, 2mndcl 13370 . . . 4  |-  ( ( G  e.  Mnd  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  .+  W
)  e.  B )
163, 4, 6, 15syl3anc 1250 . . 3  |-  ( ph  ->  ( Y  .+  W
)  e.  B )
171, 2mndass 13371 . . 3  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Z  e.  B  /\  ( Y  .+  W
)  e.  B ) )  ->  ( ( X  .+  Z )  .+  ( Y  .+  W ) )  =  ( X 
.+  ( Z  .+  ( Y  .+  W ) ) ) )
183, 10, 5, 16, 17syl13anc 1252 . 2  |-  ( ph  ->  ( ( X  .+  Z )  .+  ( Y  .+  W ) )  =  ( X  .+  ( Z  .+  ( Y 
.+  W ) ) ) )
199, 14, 183eqtr4d 2250 1  |-  ( ph  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( ( X 
.+  Z )  .+  ( Y  .+  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Mndcmnd 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mgm 13303  df-sgrp 13349  df-mnd 13364
This theorem is referenced by:  cmn4  13756
  Copyright terms: Public domain W3C validator