ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd4g Unicode version

Theorem mnd4g 13294
Description: Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
mndcl.b  |-  B  =  ( Base `  G
)
mndcl.p  |-  .+  =  ( +g  `  G )
mnd4g.1  |-  ( ph  ->  G  e.  Mnd )
mnd4g.2  |-  ( ph  ->  X  e.  B )
mnd4g.3  |-  ( ph  ->  Y  e.  B )
mnd4g.4  |-  ( ph  ->  Z  e.  B )
mnd4g.5  |-  ( ph  ->  W  e.  B )
mnd4g.6  |-  ( ph  ->  ( Y  .+  Z
)  =  ( Z 
.+  Y ) )
Assertion
Ref Expression
mnd4g  |-  ( ph  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( ( X 
.+  Z )  .+  ( Y  .+  W ) ) )

Proof of Theorem mnd4g
StepHypRef Expression
1 mndcl.b . . . 4  |-  B  =  ( Base `  G
)
2 mndcl.p . . . 4  |-  .+  =  ( +g  `  G )
3 mnd4g.1 . . . 4  |-  ( ph  ->  G  e.  Mnd )
4 mnd4g.3 . . . 4  |-  ( ph  ->  Y  e.  B )
5 mnd4g.4 . . . 4  |-  ( ph  ->  Z  e.  B )
6 mnd4g.5 . . . 4  |-  ( ph  ->  W  e.  B )
7 mnd4g.6 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  =  ( Z 
.+  Y ) )
81, 2, 3, 4, 5, 6, 7mnd12g 13293 . . 3  |-  ( ph  ->  ( Y  .+  ( Z  .+  W ) )  =  ( Z  .+  ( Y  .+  W ) ) )
98oveq2d 5962 . 2  |-  ( ph  ->  ( X  .+  ( Y  .+  ( Z  .+  W ) ) )  =  ( X  .+  ( Z  .+  ( Y 
.+  W ) ) ) )
10 mnd4g.2 . . 3  |-  ( ph  ->  X  e.  B )
111, 2mndcl 13288 . . . 4  |-  ( ( G  e.  Mnd  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
123, 5, 6, 11syl3anc 1250 . . 3  |-  ( ph  ->  ( Z  .+  W
)  e.  B )
131, 2mndass 13289 . . 3  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  ( Z  .+  W
)  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( X 
.+  ( Y  .+  ( Z  .+  W ) ) ) )
143, 10, 4, 12, 13syl13anc 1252 . 2  |-  ( ph  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( X  .+  ( Y  .+  ( Z 
.+  W ) ) ) )
151, 2mndcl 13288 . . . 4  |-  ( ( G  e.  Mnd  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  .+  W
)  e.  B )
163, 4, 6, 15syl3anc 1250 . . 3  |-  ( ph  ->  ( Y  .+  W
)  e.  B )
171, 2mndass 13289 . . 3  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Z  e.  B  /\  ( Y  .+  W
)  e.  B ) )  ->  ( ( X  .+  Z )  .+  ( Y  .+  W ) )  =  ( X 
.+  ( Z  .+  ( Y  .+  W ) ) ) )
183, 10, 5, 16, 17syl13anc 1252 . 2  |-  ( ph  ->  ( ( X  .+  Z )  .+  ( Y  .+  W ) )  =  ( X  .+  ( Z  .+  ( Y 
.+  W ) ) ) )
199, 14, 183eqtr4d 2248 1  |-  ( ph  ->  ( ( X  .+  Y )  .+  ( Z  .+  W ) )  =  ( ( X 
.+  Z )  .+  ( Y  .+  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   Mndcmnd 13281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-inn 9039  df-2 9097  df-ndx 12868  df-slot 12869  df-base 12871  df-plusg 12955  df-mgm 13221  df-sgrp 13267  df-mnd 13282
This theorem is referenced by:  cmn4  13674
  Copyright terms: Public domain W3C validator