ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndcl Unicode version

Theorem mndcl 13370
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.)
Hypotheses
Ref Expression
mndcl.b  |-  B  =  ( Base `  G
)
mndcl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mndcl  |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )

Proof of Theorem mndcl
StepHypRef Expression
1 mndmgm 13369 . 2  |-  ( G  e.  Mnd  ->  G  e. Mgm )
2 mndcl.b . . 3  |-  B  =  ( Base `  G
)
3 mndcl.p . . 3  |-  .+  =  ( +g  `  G )
42, 3mgmcl 13306 . 2  |-  ( ( G  e. Mgm  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  e.  B )
51, 4syl3an1 1283 1  |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Mgmcmgm 13301   Mndcmnd 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mgm 13303  df-sgrp 13349  df-mnd 13364
This theorem is referenced by:  mnd4g  13376  mndpropd  13387  issubmnd  13389  prdsplusgcl  13393  imasmnd  13400  idmhm  13416  mhmf1o  13417  issubmd  13421  submid  13424  0mhm  13433  mhmco  13437  mhmeql  13439  gsumwmhm  13445  gsumfzcl  13446  grpcl  13455  mhmmnd  13567  mulgnn0cl  13589  mulgnn0z  13600  gsumfzreidx  13788  gsumfzmptfidmadd  13790  gsumfzmhm  13794  srgcl  13847  srgacl  13859  ringcl  13890  ringpropd  13915
  Copyright terms: Public domain W3C validator