ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd4g GIF version

Theorem mnd4g 13131
Description: Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
mndcl.b 𝐵 = (Base‘𝐺)
mndcl.p + = (+g𝐺)
mnd4g.1 (𝜑𝐺 ∈ Mnd)
mnd4g.2 (𝜑𝑋𝐵)
mnd4g.3 (𝜑𝑌𝐵)
mnd4g.4 (𝜑𝑍𝐵)
mnd4g.5 (𝜑𝑊𝐵)
mnd4g.6 (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))
Assertion
Ref Expression
mnd4g (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))

Proof of Theorem mnd4g
StepHypRef Expression
1 mndcl.b . . . 4 𝐵 = (Base‘𝐺)
2 mndcl.p . . . 4 + = (+g𝐺)
3 mnd4g.1 . . . 4 (𝜑𝐺 ∈ Mnd)
4 mnd4g.3 . . . 4 (𝜑𝑌𝐵)
5 mnd4g.4 . . . 4 (𝜑𝑍𝐵)
6 mnd4g.5 . . . 4 (𝜑𝑊𝐵)
7 mnd4g.6 . . . 4 (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))
81, 2, 3, 4, 5, 6, 7mnd12g 13130 . . 3 (𝜑 → (𝑌 + (𝑍 + 𝑊)) = (𝑍 + (𝑌 + 𝑊)))
98oveq2d 5941 . 2 (𝜑 → (𝑋 + (𝑌 + (𝑍 + 𝑊))) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
10 mnd4g.2 . . 3 (𝜑𝑋𝐵)
111, 2mndcl 13125 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
123, 5, 6, 11syl3anc 1249 . . 3 (𝜑 → (𝑍 + 𝑊) ∈ 𝐵)
131, 2mndass 13126 . . 3 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊))))
143, 10, 4, 12, 13syl13anc 1251 . 2 (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊))))
151, 2mndcl 13125 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑌𝐵𝑊𝐵) → (𝑌 + 𝑊) ∈ 𝐵)
163, 4, 6, 15syl3anc 1249 . . 3 (𝜑 → (𝑌 + 𝑊) ∈ 𝐵)
171, 2mndass 13126 . . 3 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 + 𝑊) ∈ 𝐵)) → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
183, 10, 5, 16, 17syl13anc 1251 . 2 (𝜑 → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
199, 14, 183eqtr4d 2239 1 (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Mndcmnd 13118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mgm 13058  df-sgrp 13104  df-mnd 13119
This theorem is referenced by:  cmn4  13511
  Copyright terms: Public domain W3C validator