ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnd4g GIF version

Theorem mnd4g 13462
Description: Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
mndcl.b 𝐵 = (Base‘𝐺)
mndcl.p + = (+g𝐺)
mnd4g.1 (𝜑𝐺 ∈ Mnd)
mnd4g.2 (𝜑𝑋𝐵)
mnd4g.3 (𝜑𝑌𝐵)
mnd4g.4 (𝜑𝑍𝐵)
mnd4g.5 (𝜑𝑊𝐵)
mnd4g.6 (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))
Assertion
Ref Expression
mnd4g (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))

Proof of Theorem mnd4g
StepHypRef Expression
1 mndcl.b . . . 4 𝐵 = (Base‘𝐺)
2 mndcl.p . . . 4 + = (+g𝐺)
3 mnd4g.1 . . . 4 (𝜑𝐺 ∈ Mnd)
4 mnd4g.3 . . . 4 (𝜑𝑌𝐵)
5 mnd4g.4 . . . 4 (𝜑𝑍𝐵)
6 mnd4g.5 . . . 4 (𝜑𝑊𝐵)
7 mnd4g.6 . . . 4 (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))
81, 2, 3, 4, 5, 6, 7mnd12g 13461 . . 3 (𝜑 → (𝑌 + (𝑍 + 𝑊)) = (𝑍 + (𝑌 + 𝑊)))
98oveq2d 6017 . 2 (𝜑 → (𝑋 + (𝑌 + (𝑍 + 𝑊))) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
10 mnd4g.2 . . 3 (𝜑𝑋𝐵)
111, 2mndcl 13456 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
123, 5, 6, 11syl3anc 1271 . . 3 (𝜑 → (𝑍 + 𝑊) ∈ 𝐵)
131, 2mndass 13457 . . 3 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊))))
143, 10, 4, 12, 13syl13anc 1273 . 2 (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = (𝑋 + (𝑌 + (𝑍 + 𝑊))))
151, 2mndcl 13456 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑌𝐵𝑊𝐵) → (𝑌 + 𝑊) ∈ 𝐵)
163, 4, 6, 15syl3anc 1271 . . 3 (𝜑 → (𝑌 + 𝑊) ∈ 𝐵)
171, 2mndass 13457 . . 3 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 + 𝑊) ∈ 𝐵)) → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
183, 10, 5, 16, 17syl13anc 1273 . 2 (𝜑 → ((𝑋 + 𝑍) + (𝑌 + 𝑊)) = (𝑋 + (𝑍 + (𝑌 + 𝑊))))
199, 14, 183eqtr4d 2272 1 (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6001  Basecbs 13032  +gcplusg 13110  Mndcmnd 13449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mgm 13389  df-sgrp 13435  df-mnd 13450
This theorem is referenced by:  cmn4  13842
  Copyright terms: Public domain W3C validator