| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndidcl | Unicode version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b |
|
| mndidcl.o |
|
| Ref | Expression |
|---|---|
| mndidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b |
. 2
| |
| 2 | mndidcl.o |
. 2
| |
| 3 | eqid 2205 |
. 2
| |
| 4 | 1, 3 | mndid 13290 |
. 2
|
| 5 | 1, 2, 3, 4 | mgmidcl 13243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-riota 5901 df-ov 5949 df-inn 9039 df-2 9097 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 |
| This theorem is referenced by: mndbn0 13296 hashfinmndnn 13297 mndpfo 13303 prdsidlem 13312 imasmnd 13318 idmhm 13334 mhmf1o 13335 issubmd 13339 submid 13342 0subm 13349 0mhm 13351 mhmco 13355 mhmeql 13357 gsumvallem2 13358 gsumfzz 13360 gsumfzcl 13364 dfgrp2 13392 grpidcl 13394 mhmid 13484 mhmmnd 13485 mulgnn0cl 13507 mulgnn0z 13518 gsumfzmptfidmadd 13708 srgidcl 13771 srg0cl 13772 ringidcl 13815 |
| Copyright terms: Public domain | W3C validator |