| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndidcl | Unicode version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b |
|
| mndidcl.o |
|
| Ref | Expression |
|---|---|
| mndidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b |
. 2
| |
| 2 | mndidcl.o |
. 2
| |
| 3 | eqid 2207 |
. 2
| |
| 4 | 1, 3 | mndid 13372 |
. 2
|
| 5 | 1, 2, 3, 4 | mgmidcl 13325 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 |
| This theorem is referenced by: mndbn0 13378 hashfinmndnn 13379 mndpfo 13385 prdsidlem 13394 imasmnd 13400 idmhm 13416 mhmf1o 13417 issubmd 13421 submid 13424 0subm 13431 0mhm 13433 mhmco 13437 mhmeql 13439 gsumvallem2 13440 gsumfzz 13442 gsumfzcl 13446 dfgrp2 13474 grpidcl 13476 mhmid 13566 mhmmnd 13567 mulgnn0cl 13589 mulgnn0z 13600 gsumfzmptfidmadd 13790 srgidcl 13853 srg0cl 13854 ringidcl 13897 |
| Copyright terms: Public domain | W3C validator |