ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndidcl Unicode version

Theorem mndidcl 13011
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
mndidcl.b  |-  B  =  ( Base `  G
)
mndidcl.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
mndidcl  |-  ( G  e.  Mnd  ->  .0.  e.  B )

Proof of Theorem mndidcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndidcl.b . 2  |-  B  =  ( Base `  G
)
2 mndidcl.o . 2  |-  .0.  =  ( 0g `  G )
3 eqid 2193 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
41, 3mndid 13006 . 2  |-  ( G  e.  Mnd  ->  E. x  e.  B  A. y  e.  B  ( (
x ( +g  `  G
) y )  =  y  /\  ( y ( +g  `  G
) x )  =  y ) )
51, 2, 3, 4mgmidcl 12961 1  |-  ( G  e.  Mnd  ->  .0.  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   ` cfv 5254   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998
This theorem is referenced by:  mndbn0  13012  hashfinmndnn  13013  mndpfo  13019  idmhm  13041  mhmf1o  13042  issubmd  13046  submid  13049  0subm  13056  0mhm  13058  mhmco  13062  mhmeql  13064  gsumvallem2  13065  gsumfzz  13067  gsumfzcl  13071  dfgrp2  13099  grpidcl  13101  mhmid  13185  mhmmnd  13186  mulgnn0cl  13208  mulgnn0z  13219  gsumfzmptfidmadd  13409  srgidcl  13472  srg0cl  13473  ringidcl  13516
  Copyright terms: Public domain W3C validator