| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndidcl | Unicode version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b |
|
| mndidcl.o |
|
| Ref | Expression |
|---|---|
| mndidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b |
. 2
| |
| 2 | mndidcl.o |
. 2
| |
| 3 | eqid 2229 |
. 2
| |
| 4 | 1, 3 | mndid 13458 |
. 2
|
| 5 | 1, 2, 3, 4 | mgmidcl 13411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 |
| This theorem is referenced by: mndbn0 13464 hashfinmndnn 13465 mndpfo 13471 prdsidlem 13480 imasmnd 13486 idmhm 13502 mhmf1o 13503 issubmd 13507 submid 13510 0subm 13517 0mhm 13519 mhmco 13523 mhmeql 13525 gsumvallem2 13526 gsumfzz 13528 gsumfzcl 13532 dfgrp2 13560 grpidcl 13562 mhmid 13652 mhmmnd 13653 mulgnn0cl 13675 mulgnn0z 13686 gsumfzmptfidmadd 13876 srgidcl 13939 srg0cl 13940 ringidcl 13983 |
| Copyright terms: Public domain | W3C validator |