ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoex Unicode version

Theorem mpoex 6214
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
mpoex.1  |-  A  e. 
_V
mpoex.2  |-  B  e. 
_V
Assertion
Ref Expression
mpoex  |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hints:    B( x)    C( x, y)

Proof of Theorem mpoex
StepHypRef Expression
1 mpoex.1 . 2  |-  A  e. 
_V
2 mpoex.2 . . 3  |-  B  e. 
_V
32rgenw 2532 . 2  |-  A. x  e.  A  B  e.  _V
4 eqid 2177 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
54mpoexxg 6210 . 2  |-  ( ( A  e.  _V  /\  A. x  e.  A  B  e.  _V )  ->  (
x  e.  A , 
y  e.  B  |->  C )  e.  _V )
61, 3, 5mp2an 426 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   A.wral 2455   _Vcvv 2737    e. cmpo 5876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141
This theorem is referenced by:  prdsex  12712
  Copyright terms: Public domain W3C validator