ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoex GIF version

Theorem mpoex 6281
Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
mpoex.1 𝐴 ∈ V
mpoex.2 𝐵 ∈ V
Assertion
Ref Expression
mpoex (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem mpoex
StepHypRef Expression
1 mpoex.1 . 2 𝐴 ∈ V
2 mpoex.2 . . 3 𝐵 ∈ V
32rgenw 2552 . 2 𝑥𝐴 𝐵 ∈ V
4 eqid 2196 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
54mpoexxg 6277 . 2 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵 ∈ V) → (𝑥𝐴, 𝑦𝐵𝐶) ∈ V)
61, 3, 5mp2an 426 1 (𝑥𝐴, 𝑦𝐵𝐶) ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  wral 2475  Vcvv 2763  cmpo 5927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208
This theorem is referenced by:  prdsex  12971  blfn  14183  cndsex  14185  cnfldstr  14190  mpocnfldadd  14193  mpocnfldmul  14195  fnpsr  14297
  Copyright terms: Public domain W3C validator