| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoex | GIF version | ||
| Description: If the domain of an operation given by maps-to notation is a set, the operation is a set. (Contributed by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpoex.1 | ⊢ 𝐴 ∈ V |
| mpoex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| mpoex | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpoex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | mpoex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 2 | rgenw 2552 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
| 4 | eqid 2196 | . . 3 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | mpoexxg 6268 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V) |
| 6 | 1, 3, 5 | mp2an 426 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∀wral 2475 Vcvv 2763 ∈ cmpo 5924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 |
| This theorem is referenced by: prdsex 12940 blfn 14107 cndsex 14109 cnfldstr 14114 mpocnfldadd 14117 mpocnfldmul 14119 fnpsr 14221 |
| Copyright terms: Public domain | W3C validator |