Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoxopn0yelv | Unicode version |
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f |
Ref | Expression |
---|---|
mpoxopn0yelv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopn0yelv.f | . . . . 5 | |
2 | 1 | dmmpossx 6167 | . . . 4 |
3 | 1 | mpofun 5944 | . . . . . . 7 |
4 | funrel 5205 | . . . . . . 7 | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 |
6 | relelfvdm 5518 | . . . . . 6 | |
7 | 5, 6 | mpan 421 | . . . . 5 |
8 | df-ov 5845 | . . . . 5 | |
9 | 7, 8 | eleq2s 2261 | . . . 4 |
10 | 2, 9 | sselid 3140 | . . 3 |
11 | fveq2 5486 | . . . . 5 | |
12 | 11 | opeliunxp2 4744 | . . . 4 |
13 | 12 | simprbi 273 | . . 3 |
14 | 10, 13 | syl 14 | . 2 |
15 | op1stg 6118 | . . 3 | |
16 | 15 | eleq2d 2236 | . 2 |
17 | 14, 16 | syl5ib 153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 csn 3576 cop 3579 ciun 3866 cxp 4602 cdm 4604 wrel 4609 wfun 5182 cfv 5188 (class class class)co 5842 cmpo 5844 c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: mpoxopovel 6209 |
Copyright terms: Public domain | W3C validator |