Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoxopn0yelv | Unicode version |
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f |
Ref | Expression |
---|---|
mpoxopn0yelv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopn0yelv.f | . . . . 5 | |
2 | 1 | dmmpossx 6178 | . . . 4 |
3 | 1 | mpofun 5955 | . . . . . . 7 |
4 | funrel 5215 | . . . . . . 7 | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 |
6 | relelfvdm 5528 | . . . . . 6 | |
7 | 5, 6 | mpan 422 | . . . . 5 |
8 | df-ov 5856 | . . . . 5 | |
9 | 7, 8 | eleq2s 2265 | . . . 4 |
10 | 2, 9 | sselid 3145 | . . 3 |
11 | fveq2 5496 | . . . . 5 | |
12 | 11 | opeliunxp2 4751 | . . . 4 |
13 | 12 | simprbi 273 | . . 3 |
14 | 10, 13 | syl 14 | . 2 |
15 | op1stg 6129 | . . 3 | |
16 | 15 | eleq2d 2240 | . 2 |
17 | 14, 16 | syl5ib 153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 csn 3583 cop 3586 ciun 3873 cxp 4609 cdm 4611 wrel 4616 wfun 5192 cfv 5198 (class class class)co 5853 cmpo 5855 c1st 6117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: mpoxopovel 6220 |
Copyright terms: Public domain | W3C validator |