ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoxopn0yelv Unicode version

Theorem mpoxopn0yelv 6306
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  C )
Assertion
Ref Expression
mpoxopn0yelv  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  ->  K  e.  V ) )
Distinct variable groups:    x, y    x, K    x, V    x, W
Allowed substitution hints:    C( x, y)    F( x, y)    K( y)    N( x, y)    V( y)    W( y)    X( x, y)    Y( x, y)

Proof of Theorem mpoxopn0yelv
StepHypRef Expression
1 mpoxopn0yelv.f . . . . 5  |-  F  =  ( x  e.  _V ,  y  e.  ( 1st `  x )  |->  C )
21dmmpossx 6266 . . . 4  |-  dom  F  C_ 
U_ x  e.  _V  ( { x }  X.  ( 1st `  x ) )
31mpofun 6028 . . . . . . 7  |-  Fun  F
4 funrel 5276 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
53, 4ax-mp 5 . . . . . 6  |-  Rel  F
6 relelfvdm 5593 . . . . . 6  |-  ( ( Rel  F  /\  N  e.  ( F `  <. <. V ,  W >. ,  K >. ) )  ->  <. <. V ,  W >. ,  K >.  e.  dom  F )
75, 6mpan 424 . . . . 5  |-  ( N  e.  ( F `  <. <. V ,  W >. ,  K >. )  -> 
<. <. V ,  W >. ,  K >.  e.  dom  F )
8 df-ov 5928 . . . . 5  |-  ( <. V ,  W >. F K )  =  ( F `  <. <. V ,  W >. ,  K >. )
97, 8eleq2s 2291 . . . 4  |-  ( N  e.  ( <. V ,  W >. F K )  ->  <. <. V ,  W >. ,  K >.  e.  dom  F )
102, 9sselid 3182 . . 3  |-  ( N  e.  ( <. V ,  W >. F K )  ->  <. <. V ,  W >. ,  K >.  e.  U_ x  e.  _V  ( { x }  X.  ( 1st `  x ) ) )
11 fveq2 5561 . . . . 5  |-  ( x  =  <. V ,  W >.  ->  ( 1st `  x
)  =  ( 1st `  <. V ,  W >. ) )
1211opeliunxp2 4807 . . . 4  |-  ( <. <. V ,  W >. ,  K >.  e.  U_ x  e.  _V  ( { x }  X.  ( 1st `  x
) )  <->  ( <. V ,  W >.  e.  _V  /\  K  e.  ( 1st `  <. V ,  W >. ) ) )
1312simprbi 275 . . 3  |-  ( <. <. V ,  W >. ,  K >.  e.  U_ x  e.  _V  ( { x }  X.  ( 1st `  x
) )  ->  K  e.  ( 1st `  <. V ,  W >. )
)
1410, 13syl 14 . 2  |-  ( N  e.  ( <. V ,  W >. F K )  ->  K  e.  ( 1st `  <. V ,  W >. ) )
15 op1stg 6217 . . 3  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( 1st `  <. V ,  W >. )  =  V )
1615eleq2d 2266 . 2  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( K  e.  ( 1st `  <. V ,  W >. )  <->  K  e.  V ) )
1714, 16imbitrid 154 1  |-  ( ( V  e.  X  /\  W  e.  Y )  ->  ( N  e.  (
<. V ,  W >. F K )  ->  K  e.  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3623   <.cop 3626   U_ciun 3917    X. cxp 4662   dom cdm 4664   Rel wrel 4669   Fun wfun 5253   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208
This theorem is referenced by:  mpoxopovel  6308
  Copyright terms: Public domain W3C validator