| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | Unicode version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 |
|
| Ref | Expression |
|---|---|
| ad2ant2l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 |
. . 3
| |
| 2 | 1 | adantrl 478 |
. 2
|
| 3 | 2 | adantll 476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5693 mpofun 6070 xpdom2 6951 addcmpblnq 7515 addpipqqslem 7517 addpipqqs 7518 addclnq 7523 addcomnqg 7529 addassnqg 7530 mulcomnqg 7531 mulassnqg 7532 distrnqg 7535 ltdcnq 7545 enq0ref 7581 addcmpblnq0 7591 addclnq0 7599 nqpnq0nq 7601 nqnq0a 7602 nqnq0m 7603 distrnq0 7607 mulcomnq0 7608 addassnq0lemcl 7609 genpdisj 7671 appdiv0nq 7712 addcomsrg 7903 mulcomsrg 7905 mulasssrg 7906 distrsrg 7907 addcnsr 7982 mulcnsr 7983 addcnsrec 7990 axaddcl 8012 axmulcl 8014 axaddcom 8018 add42 8269 muladd 8491 mulsub 8508 apreim 8711 divmuleqap 8825 ltmul12a 8968 lemul12b 8969 lemul12a 8970 qaddcl 9791 qmulcl 9793 iooshf 10109 fzass4 10219 elfzomelpfzo 10397 swrdccatin2 11220 pfxccatin12 11224 tanaddaplem 12164 issubg4m 13644 ghmpreima 13717 islmodd 14170 opnneissb 14742 neitx 14855 txcnmpt 14860 txrest 14863 metcnp3 15098 cncfmet 15179 dveflem 15313 lgsdir2 15625 |
| Copyright terms: Public domain | W3C validator |