| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | Unicode version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| ad2ant2.1 | 
 | 
| Ref | Expression | 
|---|---|
| ad2ant2l | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ad2ant2.1 | 
. . 3
 | |
| 2 | 1 | adantrl 478 | 
. 2
 | 
| 3 | 2 | adantll 476 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: mpteqb 5652 mpofun 6024 xpdom2 6890 addcmpblnq 7434 addpipqqslem 7436 addpipqqs 7437 addclnq 7442 addcomnqg 7448 addassnqg 7449 mulcomnqg 7450 mulassnqg 7451 distrnqg 7454 ltdcnq 7464 enq0ref 7500 addcmpblnq0 7510 addclnq0 7518 nqpnq0nq 7520 nqnq0a 7521 nqnq0m 7522 distrnq0 7526 mulcomnq0 7527 addassnq0lemcl 7528 genpdisj 7590 appdiv0nq 7631 addcomsrg 7822 mulcomsrg 7824 mulasssrg 7825 distrsrg 7826 addcnsr 7901 mulcnsr 7902 addcnsrec 7909 axaddcl 7931 axmulcl 7933 axaddcom 7937 add42 8188 muladd 8410 mulsub 8427 apreim 8630 divmuleqap 8744 ltmul12a 8887 lemul12b 8888 lemul12a 8889 qaddcl 9709 qmulcl 9711 iooshf 10027 fzass4 10137 elfzomelpfzo 10307 tanaddaplem 11903 issubg4m 13323 ghmpreima 13396 islmodd 13849 opnneissb 14391 neitx 14504 txcnmpt 14509 txrest 14512 metcnp3 14747 cncfmet 14828 dveflem 14962 lgsdir2 15274 | 
| Copyright terms: Public domain | W3C validator |