Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ad2ant2l | Unicode version |
Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ad2ant2.1 |
Ref | Expression |
---|---|
ad2ant2l |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant2.1 | . . 3 | |
2 | 1 | adantrl 470 | . 2 |
3 | 2 | adantll 468 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: mpteqb 5551 mpofun 5913 xpdom2 6765 addcmpblnq 7266 addpipqqslem 7268 addpipqqs 7269 addclnq 7274 addcomnqg 7280 addassnqg 7281 mulcomnqg 7282 mulassnqg 7283 distrnqg 7286 ltdcnq 7296 enq0ref 7332 addcmpblnq0 7342 addclnq0 7350 nqpnq0nq 7352 nqnq0a 7353 nqnq0m 7354 distrnq0 7358 mulcomnq0 7359 addassnq0lemcl 7360 genpdisj 7422 appdiv0nq 7463 addcomsrg 7654 mulcomsrg 7656 mulasssrg 7657 distrsrg 7658 addcnsr 7733 mulcnsr 7734 addcnsrec 7741 axaddcl 7763 axmulcl 7765 axaddcom 7769 add42 8016 muladd 8238 mulsub 8255 apreim 8457 divmuleqap 8569 ltmul12a 8710 lemul12b 8711 lemul12a 8712 qaddcl 9522 qmulcl 9524 iooshf 9834 fzass4 9942 elfzomelpfzo 10108 tanaddaplem 11612 opnneissb 12494 neitx 12607 txcnmpt 12612 txrest 12615 metcnp3 12850 cncfmet 12918 dveflem 13026 |
Copyright terms: Public domain | W3C validator |