| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | Unicode version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 |
|
| Ref | Expression |
|---|---|
| ad2ant2l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 |
. . 3
| |
| 2 | 1 | adantrl 478 |
. 2
|
| 3 | 2 | adantll 476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5672 mpofun 6049 xpdom2 6928 addcmpblnq 7482 addpipqqslem 7484 addpipqqs 7485 addclnq 7490 addcomnqg 7496 addassnqg 7497 mulcomnqg 7498 mulassnqg 7499 distrnqg 7502 ltdcnq 7512 enq0ref 7548 addcmpblnq0 7558 addclnq0 7566 nqpnq0nq 7568 nqnq0a 7569 nqnq0m 7570 distrnq0 7574 mulcomnq0 7575 addassnq0lemcl 7576 genpdisj 7638 appdiv0nq 7679 addcomsrg 7870 mulcomsrg 7872 mulasssrg 7873 distrsrg 7874 addcnsr 7949 mulcnsr 7950 addcnsrec 7957 axaddcl 7979 axmulcl 7981 axaddcom 7985 add42 8236 muladd 8458 mulsub 8475 apreim 8678 divmuleqap 8792 ltmul12a 8935 lemul12b 8936 lemul12a 8937 qaddcl 9758 qmulcl 9760 iooshf 10076 fzass4 10186 elfzomelpfzo 10362 tanaddaplem 12082 issubg4m 13562 ghmpreima 13635 islmodd 14088 opnneissb 14660 neitx 14773 txcnmpt 14778 txrest 14781 metcnp3 15016 cncfmet 15097 dveflem 15231 lgsdir2 15543 |
| Copyright terms: Public domain | W3C validator |