| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad2ant2l | Unicode version | ||
| Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| ad2ant2.1 |
|
| Ref | Expression |
|---|---|
| ad2ant2l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant2.1 |
. . 3
| |
| 2 | 1 | adantrl 478 |
. 2
|
| 3 | 2 | adantll 476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: mpteqb 5725 mpofun 6106 xpdom2 6990 addcmpblnq 7554 addpipqqslem 7556 addpipqqs 7557 addclnq 7562 addcomnqg 7568 addassnqg 7569 mulcomnqg 7570 mulassnqg 7571 distrnqg 7574 ltdcnq 7584 enq0ref 7620 addcmpblnq0 7630 addclnq0 7638 nqpnq0nq 7640 nqnq0a 7641 nqnq0m 7642 distrnq0 7646 mulcomnq0 7647 addassnq0lemcl 7648 genpdisj 7710 appdiv0nq 7751 addcomsrg 7942 mulcomsrg 7944 mulasssrg 7945 distrsrg 7946 addcnsr 8021 mulcnsr 8022 addcnsrec 8029 axaddcl 8051 axmulcl 8053 axaddcom 8057 add42 8308 muladd 8530 mulsub 8547 apreim 8750 divmuleqap 8864 ltmul12a 9007 lemul12b 9008 lemul12a 9009 qaddcl 9830 qmulcl 9832 iooshf 10148 fzass4 10258 elfzomelpfzo 10437 swrdccatin2 11261 pfxccatin12 11265 tanaddaplem 12249 issubg4m 13730 ghmpreima 13803 islmodd 14257 opnneissb 14829 neitx 14942 txcnmpt 14947 txrest 14950 metcnp3 15185 cncfmet 15266 dveflem 15400 lgsdir2 15712 |
| Copyright terms: Public domain | W3C validator |