ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaddcld Unicode version

Theorem nnaddcld 8940
Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1  |-  ( ph  ->  A  e.  NN )
nnmulcld.2  |-  ( ph  ->  B  e.  NN )
Assertion
Ref Expression
nnaddcld  |-  ( ph  ->  ( A  +  B
)  e.  NN )

Proof of Theorem nnaddcld
StepHypRef Expression
1 nnge1d.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnmulcld.2 . 2  |-  ( ph  ->  B  e.  NN )
3 nnaddcl 8912 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  +  B
)  e.  NN )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  +  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146  (class class class)co 5865    + caddc 7789   NNcn 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-addrcl 7883  ax-addass 7888
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868  df-inn 8893
This theorem is referenced by:  pythagtriplem4  12235  pythagtriplem6  12237  pythagtriplem7  12238  pythagtriplem11  12241  pythagtriplem12  12242  pythagtriplem13  12243  pythagtriplem14  12244  pythagtriplem15  12245  pythagtriplem16  12246  mulgnndir  12881
  Copyright terms: Public domain W3C validator