| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnaddcld | Unicode version | ||
| Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| nnmulcld.2 |
|
| Ref | Expression |
|---|---|
| nnaddcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnmulcld.2 |
. 2
| |
| 3 | nnaddcl 9027 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-addrcl 7993 ax-addass 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 |
| This theorem is referenced by: pythagtriplem4 12462 pythagtriplem6 12464 pythagtriplem7 12465 pythagtriplem11 12468 pythagtriplem12 12469 pythagtriplem13 12470 pythagtriplem14 12471 pythagtriplem15 12472 pythagtriplem16 12473 mulgnndir 13357 perfectlem2 15320 lgseisenlem2 15396 |
| Copyright terms: Public domain | W3C validator |