Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnaddcld | Unicode version |
Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | |
nnmulcld.2 |
Ref | Expression |
---|---|
nnaddcld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 | |
2 | nnmulcld.2 | . 2 | |
3 | nnaddcl 8877 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 (class class class)co 5842 caddc 7756 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-addrcl 7850 ax-addass 7855 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 |
This theorem is referenced by: pythagtriplem4 12200 pythagtriplem6 12202 pythagtriplem7 12203 pythagtriplem11 12206 pythagtriplem12 12207 pythagtriplem13 12208 pythagtriplem14 12209 pythagtriplem15 12210 pythagtriplem16 12211 |
Copyright terms: Public domain | W3C validator |