| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnaddcld | Unicode version | ||
| Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| nnge1d.1 | 
 | 
| nnmulcld.2 | 
 | 
| Ref | Expression | 
|---|---|
| nnaddcld | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnge1d.1 | 
. 2
 | |
| 2 | nnmulcld.2 | 
. 2
 | |
| 3 | nnaddcl 9010 | 
. 2
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-addrcl 7976 ax-addass 7981 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 | 
| This theorem is referenced by: pythagtriplem4 12437 pythagtriplem6 12439 pythagtriplem7 12440 pythagtriplem11 12443 pythagtriplem12 12444 pythagtriplem13 12445 pythagtriplem14 12446 pythagtriplem15 12447 pythagtriplem16 12448 mulgnndir 13281 perfectlem2 15236 lgseisenlem2 15312 | 
| Copyright terms: Public domain | W3C validator |