| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnaddcl | Unicode version | ||
| Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
| Ref | Expression |
|---|---|
| nnaddcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5933 |
. . . . 5
| |
| 2 | 1 | eleq1d 2265 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5933 |
. . . . 5
| |
| 5 | 4 | eleq1d 2265 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | oveq2 5933 |
. . . . 5
| |
| 8 | 7 | eleq1d 2265 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | oveq2 5933 |
. . . . 5
| |
| 11 | 10 | eleq1d 2265 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | peano2nn 9019 |
. . 3
| |
| 14 | peano2nn 9019 |
. . . . . 6
| |
| 15 | nncn 9015 |
. . . . . . . 8
| |
| 16 | nncn 9015 |
. . . . . . . 8
| |
| 17 | ax-1cn 7989 |
. . . . . . . . 9
| |
| 18 | addass 8026 |
. . . . . . . . 9
| |
| 19 | 17, 18 | mp3an3 1337 |
. . . . . . . 8
|
| 20 | 15, 16, 19 | syl2an 289 |
. . . . . . 7
|
| 21 | 20 | eleq1d 2265 |
. . . . . 6
|
| 22 | 14, 21 | imbitrid 154 |
. . . . 5
|
| 23 | 22 | expcom 116 |
. . . 4
|
| 24 | 23 | a2d 26 |
. . 3
|
| 25 | 3, 6, 9, 12, 13, 24 | nnind 9023 |
. 2
|
| 26 | 25 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-addrcl 7993 ax-addass 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 |
| This theorem is referenced by: nnmulcl 9028 nn2ge 9040 nnaddcld 9055 nnnn0addcl 9296 nn0addcl 9301 9p1e10 9476 pythagtriplem4 12462 mulgnndir 13357 |
| Copyright terms: Public domain | W3C validator |