Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnaddcl | Unicode version |
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
Ref | Expression |
---|---|
nnaddcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5861 | . . . . 5 | |
2 | 1 | eleq1d 2239 | . . . 4 |
3 | 2 | imbi2d 229 | . . 3 |
4 | oveq2 5861 | . . . . 5 | |
5 | 4 | eleq1d 2239 | . . . 4 |
6 | 5 | imbi2d 229 | . . 3 |
7 | oveq2 5861 | . . . . 5 | |
8 | 7 | eleq1d 2239 | . . . 4 |
9 | 8 | imbi2d 229 | . . 3 |
10 | oveq2 5861 | . . . . 5 | |
11 | 10 | eleq1d 2239 | . . . 4 |
12 | 11 | imbi2d 229 | . . 3 |
13 | peano2nn 8890 | . . 3 | |
14 | peano2nn 8890 | . . . . . 6 | |
15 | nncn 8886 | . . . . . . . 8 | |
16 | nncn 8886 | . . . . . . . 8 | |
17 | ax-1cn 7867 | . . . . . . . . 9 | |
18 | addass 7904 | . . . . . . . . 9 | |
19 | 17, 18 | mp3an3 1321 | . . . . . . . 8 |
20 | 15, 16, 19 | syl2an 287 | . . . . . . 7 |
21 | 20 | eleq1d 2239 | . . . . . 6 |
22 | 14, 21 | syl5ib 153 | . . . . 5 |
23 | 22 | expcom 115 | . . . 4 |
24 | 23 | a2d 26 | . . 3 |
25 | 3, 6, 9, 12, 13, 24 | nnind 8894 | . 2 |
26 | 25 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 c1 7775 caddc 7777 cn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-addrcl 7871 ax-addass 7876 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 |
This theorem is referenced by: nnmulcl 8899 nn2ge 8911 nnaddcld 8926 nnnn0addcl 9165 nn0addcl 9170 9p1e10 9345 pythagtriplem4 12222 |
Copyright terms: Public domain | W3C validator |