Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnaddcl | Unicode version |
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
Ref | Expression |
---|---|
nnaddcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5849 | . . . . 5 | |
2 | 1 | eleq1d 2234 | . . . 4 |
3 | 2 | imbi2d 229 | . . 3 |
4 | oveq2 5849 | . . . . 5 | |
5 | 4 | eleq1d 2234 | . . . 4 |
6 | 5 | imbi2d 229 | . . 3 |
7 | oveq2 5849 | . . . . 5 | |
8 | 7 | eleq1d 2234 | . . . 4 |
9 | 8 | imbi2d 229 | . . 3 |
10 | oveq2 5849 | . . . . 5 | |
11 | 10 | eleq1d 2234 | . . . 4 |
12 | 11 | imbi2d 229 | . . 3 |
13 | peano2nn 8865 | . . 3 | |
14 | peano2nn 8865 | . . . . . 6 | |
15 | nncn 8861 | . . . . . . . 8 | |
16 | nncn 8861 | . . . . . . . 8 | |
17 | ax-1cn 7842 | . . . . . . . . 9 | |
18 | addass 7879 | . . . . . . . . 9 | |
19 | 17, 18 | mp3an3 1316 | . . . . . . . 8 |
20 | 15, 16, 19 | syl2an 287 | . . . . . . 7 |
21 | 20 | eleq1d 2234 | . . . . . 6 |
22 | 14, 21 | syl5ib 153 | . . . . 5 |
23 | 22 | expcom 115 | . . . 4 |
24 | 23 | a2d 26 | . . 3 |
25 | 3, 6, 9, 12, 13, 24 | nnind 8869 | . 2 |
26 | 25 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5841 cc 7747 c1 7750 caddc 7752 cn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-addrcl 7846 ax-addass 7851 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 |
This theorem is referenced by: nnmulcl 8874 nn2ge 8886 nnaddcld 8901 nnnn0addcl 9140 nn0addcl 9145 9p1e10 9320 pythagtriplem4 12196 |
Copyright terms: Public domain | W3C validator |