| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nnaddcl | Unicode version | ||
| Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) | 
| Ref | Expression | 
|---|---|
| nnaddcl | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 5930 | 
. . . . 5
 | |
| 2 | 1 | eleq1d 2265 | 
. . . 4
 | 
| 3 | 2 | imbi2d 230 | 
. . 3
 | 
| 4 | oveq2 5930 | 
. . . . 5
 | |
| 5 | 4 | eleq1d 2265 | 
. . . 4
 | 
| 6 | 5 | imbi2d 230 | 
. . 3
 | 
| 7 | oveq2 5930 | 
. . . . 5
 | |
| 8 | 7 | eleq1d 2265 | 
. . . 4
 | 
| 9 | 8 | imbi2d 230 | 
. . 3
 | 
| 10 | oveq2 5930 | 
. . . . 5
 | |
| 11 | 10 | eleq1d 2265 | 
. . . 4
 | 
| 12 | 11 | imbi2d 230 | 
. . 3
 | 
| 13 | peano2nn 9002 | 
. . 3
 | |
| 14 | peano2nn 9002 | 
. . . . . 6
 | |
| 15 | nncn 8998 | 
. . . . . . . 8
 | |
| 16 | nncn 8998 | 
. . . . . . . 8
 | |
| 17 | ax-1cn 7972 | 
. . . . . . . . 9
 | |
| 18 | addass 8009 | 
. . . . . . . . 9
 | |
| 19 | 17, 18 | mp3an3 1337 | 
. . . . . . . 8
 | 
| 20 | 15, 16, 19 | syl2an 289 | 
. . . . . . 7
 | 
| 21 | 20 | eleq1d 2265 | 
. . . . . 6
 | 
| 22 | 14, 21 | imbitrid 154 | 
. . . . 5
 | 
| 23 | 22 | expcom 116 | 
. . . 4
 | 
| 24 | 23 | a2d 26 | 
. . 3
 | 
| 25 | 3, 6, 9, 12, 13, 24 | nnind 9006 | 
. 2
 | 
| 26 | 25 | impcom 125 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-addrcl 7976 ax-addass 7981 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 | 
| This theorem is referenced by: nnmulcl 9011 nn2ge 9023 nnaddcld 9038 nnnn0addcl 9279 nn0addcl 9284 9p1e10 9459 pythagtriplem4 12437 mulgnndir 13281 | 
| Copyright terms: Public domain | W3C validator |