ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaddcl Unicode version

Theorem nnaddcl 8873
Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnaddcl  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  +  B
)  e.  NN )

Proof of Theorem nnaddcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5849 . . . . 5  |-  ( x  =  1  ->  ( A  +  x )  =  ( A  + 
1 ) )
21eleq1d 2234 . . . 4  |-  ( x  =  1  ->  (
( A  +  x
)  e.  NN  <->  ( A  +  1 )  e.  NN ) )
32imbi2d 229 . . 3  |-  ( x  =  1  ->  (
( A  e.  NN  ->  ( A  +  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  +  1 )  e.  NN ) ) )
4 oveq2 5849 . . . . 5  |-  ( x  =  y  ->  ( A  +  x )  =  ( A  +  y ) )
54eleq1d 2234 . . . 4  |-  ( x  =  y  ->  (
( A  +  x
)  e.  NN  <->  ( A  +  y )  e.  NN ) )
65imbi2d 229 . . 3  |-  ( x  =  y  ->  (
( A  e.  NN  ->  ( A  +  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  +  y )  e.  NN ) ) )
7 oveq2 5849 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  +  x )  =  ( A  +  ( y  +  1 ) ) )
87eleq1d 2234 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( A  +  x
)  e.  NN  <->  ( A  +  ( y  +  1 ) )  e.  NN ) )
98imbi2d 229 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  NN  ->  ( A  +  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  +  ( y  +  1 ) )  e.  NN ) ) )
10 oveq2 5849 . . . . 5  |-  ( x  =  B  ->  ( A  +  x )  =  ( A  +  B ) )
1110eleq1d 2234 . . . 4  |-  ( x  =  B  ->  (
( A  +  x
)  e.  NN  <->  ( A  +  B )  e.  NN ) )
1211imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( A  e.  NN  ->  ( A  +  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  +  B
)  e.  NN ) ) )
13 peano2nn 8865 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
14 peano2nn 8865 . . . . . 6  |-  ( ( A  +  y )  e.  NN  ->  (
( A  +  y )  +  1 )  e.  NN )
15 nncn 8861 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
16 nncn 8861 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  CC )
17 ax-1cn 7842 . . . . . . . . 9  |-  1  e.  CC
18 addass 7879 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  1  e.  CC )  ->  (
( A  +  y )  +  1 )  =  ( A  +  ( y  +  1 ) ) )
1917, 18mp3an3 1316 . . . . . . . 8  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( A  +  y )  +  1 )  =  ( A  +  ( y  +  1 ) ) )
2015, 16, 19syl2an 287 . . . . . . 7  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  +  y )  +  1 )  =  ( A  +  ( y  +  1 ) ) )
2120eleq1d 2234 . . . . . 6  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( ( A  +  y )  +  1 )  e.  NN  <->  ( A  +  ( y  +  1 ) )  e.  NN ) )
2214, 21syl5ib 153 . . . . 5  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  +  y )  e.  NN  ->  ( A  +  ( y  +  1 ) )  e.  NN ) )
2322expcom 115 . . . 4  |-  ( y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  +  y )  e.  NN  ->  ( A  +  ( y  +  1 ) )  e.  NN ) ) )
2423a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( A  e.  NN  ->  ( A  +  y )  e.  NN )  ->  ( A  e.  NN  ->  ( A  +  ( y  +  1 ) )  e.  NN ) ) )
253, 6, 9, 12, 13, 24nnind 8869 . 2  |-  ( B  e.  NN  ->  ( A  e.  NN  ->  ( A  +  B )  e.  NN ) )
2625impcom 124 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  +  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136  (class class class)co 5841   CCcc 7747   1c1 7750    + caddc 7752   NNcn 8853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4099  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-addrcl 7846  ax-addass 7851
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-iota 5152  df-fv 5195  df-ov 5844  df-inn 8854
This theorem is referenced by:  nnmulcl  8874  nn2ge  8886  nnaddcld  8901  nnnn0addcl  9140  nn0addcl  9145  9p1e10  9320  pythagtriplem4  12196
  Copyright terms: Public domain W3C validator