| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnaddcl | Unicode version | ||
| Description: Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
| Ref | Expression |
|---|---|
| nnaddcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. . . . 5
| |
| 2 | 1 | eleq1d 2276 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5975 |
. . . . 5
| |
| 5 | 4 | eleq1d 2276 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | oveq2 5975 |
. . . . 5
| |
| 8 | 7 | eleq1d 2276 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | oveq2 5975 |
. . . . 5
| |
| 11 | 10 | eleq1d 2276 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | peano2nn 9083 |
. . 3
| |
| 14 | peano2nn 9083 |
. . . . . 6
| |
| 15 | nncn 9079 |
. . . . . . . 8
| |
| 16 | nncn 9079 |
. . . . . . . 8
| |
| 17 | ax-1cn 8053 |
. . . . . . . . 9
| |
| 18 | addass 8090 |
. . . . . . . . 9
| |
| 19 | 17, 18 | mp3an3 1339 |
. . . . . . . 8
|
| 20 | 15, 16, 19 | syl2an 289 |
. . . . . . 7
|
| 21 | 20 | eleq1d 2276 |
. . . . . 6
|
| 22 | 14, 21 | imbitrid 154 |
. . . . 5
|
| 23 | 22 | expcom 116 |
. . . 4
|
| 24 | 23 | a2d 26 |
. . 3
|
| 25 | 3, 6, 9, 12, 13, 24 | nnind 9087 |
. 2
|
| 26 | 25 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-addrcl 8057 ax-addass 8062 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 |
| This theorem is referenced by: nnmulcl 9092 nn2ge 9104 nnaddcld 9119 nnnn0addcl 9360 nn0addcl 9365 9p1e10 9541 pythagtriplem4 12706 mulgnndir 13602 |
| Copyright terms: Public domain | W3C validator |