ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaddcld GIF version

Theorem nnaddcld 9158
Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
nnmulcld.2 (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
nnaddcld (𝜑 → (𝐴 + 𝐵) ∈ ℕ)

Proof of Theorem nnaddcld
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnmulcld.2 . 2 (𝜑𝐵 ∈ ℕ)
3 nnaddcl 9130 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 + 𝐵) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  (class class class)co 6001   + caddc 8002  cn 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-addrcl 8096  ax-addass 8101
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-inn 9111
This theorem is referenced by:  pythagtriplem4  12791  pythagtriplem6  12793  pythagtriplem7  12794  pythagtriplem11  12797  pythagtriplem12  12798  pythagtriplem13  12799  pythagtriplem14  12800  pythagtriplem15  12801  pythagtriplem16  12802  mulgnndir  13688  perfectlem2  15674  lgseisenlem2  15750
  Copyright terms: Public domain W3C validator