ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaddcld GIF version

Theorem nnaddcld 9084
Description: Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1 (𝜑𝐴 ∈ ℕ)
nnmulcld.2 (𝜑𝐵 ∈ ℕ)
Assertion
Ref Expression
nnaddcld (𝜑 → (𝐴 + 𝐵) ∈ ℕ)

Proof of Theorem nnaddcld
StepHypRef Expression
1 nnge1d.1 . 2 (𝜑𝐴 ∈ ℕ)
2 nnmulcld.2 . 2 (𝜑𝐵 ∈ ℕ)
3 nnaddcl 9056 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 + 𝐵) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  (class class class)co 5944   + caddc 7928  cn 9036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-addrcl 8022  ax-addass 8027
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-inn 9037
This theorem is referenced by:  pythagtriplem4  12591  pythagtriplem6  12593  pythagtriplem7  12594  pythagtriplem11  12597  pythagtriplem12  12598  pythagtriplem13  12599  pythagtriplem14  12600  pythagtriplem15  12601  pythagtriplem16  12602  mulgnndir  13487  perfectlem2  15472  lgseisenlem2  15548
  Copyright terms: Public domain W3C validator