| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pythagtriplem7 | Unicode version | ||
| Description: Lemma for pythagtrip 12650. Calculate |
| Ref | Expression |
|---|---|
| pythagtriplem7 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 |
. . . . . . . . 9
| |
| 2 | 1 | nnzd 9501 |
. . . . . . . 8
|
| 3 | simp2 1001 |
. . . . . . . . 9
| |
| 4 | 3 | nnzd 9501 |
. . . . . . . 8
|
| 5 | 2, 4 | zsubcld 9507 |
. . . . . . 7
|
| 6 | 5 | 3ad2ant1 1021 |
. . . . . 6
|
| 7 | 1, 3 | nnaddcld 9091 |
. . . . . . . 8
|
| 8 | 7 | nnnn0d 9355 |
. . . . . . 7
|
| 9 | 8 | 3ad2ant1 1021 |
. . . . . 6
|
| 10 | nnnn0 9309 |
. . . . . . . 8
| |
| 11 | 10 | 3ad2ant1 1021 |
. . . . . . 7
|
| 12 | 11 | 3ad2ant1 1021 |
. . . . . 6
|
| 13 | 6, 9, 12 | 3jca 1180 |
. . . . 5
|
| 14 | pythagtriplem4 12635 |
. . . . . . 7
| |
| 15 | 14 | oveq1d 5966 |
. . . . . 6
|
| 16 | nnz 9398 |
. . . . . . . . 9
| |
| 17 | 16 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 18 | 17 | 3ad2ant1 1021 |
. . . . . . 7
|
| 19 | 1gcd 12357 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | 15, 20 | eqtrd 2239 |
. . . . 5
|
| 22 | 13, 21 | jca 306 |
. . . 4
|
| 23 | oveq1 5958 |
. . . . . 6
| |
| 24 | 23 | 3ad2ant2 1022 |
. . . . 5
|
| 25 | nncn 9051 |
. . . . . . . . 9
| |
| 26 | 25 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 27 | 26 | sqcld 10823 |
. . . . . . 7
|
| 28 | 3 | nncnd 9057 |
. . . . . . . 8
|
| 29 | 28 | sqcld 10823 |
. . . . . . 7
|
| 30 | 27, 29 | pncand 8391 |
. . . . . 6
|
| 31 | 30 | 3ad2ant1 1021 |
. . . . 5
|
| 32 | 1 | nncnd 9057 |
. . . . . . . 8
|
| 33 | subsq 10798 |
. . . . . . . 8
| |
| 34 | 32, 28, 33 | syl2anc 411 |
. . . . . . 7
|
| 35 | 7 | nncnd 9057 |
. . . . . . . 8
|
| 36 | 5 | zcnd 9503 |
. . . . . . . 8
|
| 37 | 35, 36 | mulcomd 8101 |
. . . . . . 7
|
| 38 | 34, 37 | eqtrd 2239 |
. . . . . 6
|
| 39 | 38 | 3ad2ant1 1021 |
. . . . 5
|
| 40 | 24, 31, 39 | 3eqtr3d 2247 |
. . . 4
|
| 41 | coprimeprodsq2 12625 |
. . . 4
| |
| 42 | 22, 40, 41 | sylc 62 |
. . 3
|
| 43 | 42 | fveq2d 5587 |
. 2
|
| 44 | 7 | nnzd 9501 |
. . . . . 6
|
| 45 | 44 | 3ad2ant1 1021 |
. . . . 5
|
| 46 | 45, 18 | gcdcld 12333 |
. . . 4
|
| 47 | 46 | nn0red 9356 |
. . 3
|
| 48 | 46 | nn0ge0d 9358 |
. . 3
|
| 49 | 47, 48 | sqrtsqd 11520 |
. 2
|
| 50 | 43, 49 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-2o 6510 df-er 6627 df-en 6835 df-sup 7093 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 df-gcd 12319 df-prm 12474 |
| This theorem is referenced by: pythagtriplem9 12640 pythagtriplem11 12641 pythagtriplem13 12643 |
| Copyright terms: Public domain | W3C validator |