Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pythagtriplem7 | Unicode version |
Description: Lemma for pythagtrip 12204. Calculate . (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
pythagtriplem7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 988 | . . . . . . . . 9 | |
2 | 1 | nnzd 9304 | . . . . . . . 8 |
3 | simp2 987 | . . . . . . . . 9 | |
4 | 3 | nnzd 9304 | . . . . . . . 8 |
5 | 2, 4 | zsubcld 9310 | . . . . . . 7 |
6 | 5 | 3ad2ant1 1007 | . . . . . 6 |
7 | 1, 3 | nnaddcld 8897 | . . . . . . . 8 |
8 | 7 | nnnn0d 9159 | . . . . . . 7 |
9 | 8 | 3ad2ant1 1007 | . . . . . 6 |
10 | nnnn0 9113 | . . . . . . . 8 | |
11 | 10 | 3ad2ant1 1007 | . . . . . . 7 |
12 | 11 | 3ad2ant1 1007 | . . . . . 6 |
13 | 6, 9, 12 | 3jca 1166 | . . . . 5 |
14 | pythagtriplem4 12189 | . . . . . . 7 | |
15 | 14 | oveq1d 5852 | . . . . . 6 |
16 | nnz 9202 | . . . . . . . . 9 | |
17 | 16 | 3ad2ant1 1007 | . . . . . . . 8 |
18 | 17 | 3ad2ant1 1007 | . . . . . . 7 |
19 | 1gcd 11914 | . . . . . . 7 | |
20 | 18, 19 | syl 14 | . . . . . 6 |
21 | 15, 20 | eqtrd 2197 | . . . . 5 |
22 | 13, 21 | jca 304 | . . . 4 |
23 | oveq1 5844 | . . . . . 6 | |
24 | 23 | 3ad2ant2 1008 | . . . . 5 |
25 | nncn 8857 | . . . . . . . . 9 | |
26 | 25 | 3ad2ant1 1007 | . . . . . . . 8 |
27 | 26 | sqcld 10576 | . . . . . . 7 |
28 | 3 | nncnd 8863 | . . . . . . . 8 |
29 | 28 | sqcld 10576 | . . . . . . 7 |
30 | 27, 29 | pncand 8202 | . . . . . 6 |
31 | 30 | 3ad2ant1 1007 | . . . . 5 |
32 | 1 | nncnd 8863 | . . . . . . . 8 |
33 | subsq 10552 | . . . . . . . 8 | |
34 | 32, 28, 33 | syl2anc 409 | . . . . . . 7 |
35 | 7 | nncnd 8863 | . . . . . . . 8 |
36 | 5 | zcnd 9306 | . . . . . . . 8 |
37 | 35, 36 | mulcomd 7912 | . . . . . . 7 |
38 | 34, 37 | eqtrd 2197 | . . . . . 6 |
39 | 38 | 3ad2ant1 1007 | . . . . 5 |
40 | 24, 31, 39 | 3eqtr3d 2205 | . . . 4 |
41 | coprimeprodsq2 12179 | . . . 4 | |
42 | 22, 40, 41 | sylc 62 | . . 3 |
43 | 42 | fveq2d 5485 | . 2 |
44 | 7 | nnzd 9304 | . . . . . 6 |
45 | 44 | 3ad2ant1 1007 | . . . . 5 |
46 | 45, 18 | gcdcld 11890 | . . . 4 |
47 | 46 | nn0red 9160 | . . 3 |
48 | 46 | nn0ge0d 9162 | . . 3 |
49 | 47, 48 | sqrtsqd 11097 | . 2 |
50 | 43, 49 | eqtrd 2197 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 967 wceq 1342 wcel 2135 class class class wbr 3977 cfv 5183 (class class class)co 5837 cc 7743 c1 7746 caddc 7748 cmul 7750 cmin 8061 cn 8849 c2 8900 cn0 9106 cz 9183 cexp 10445 csqrt 10928 cdvds 11717 cgcd 11864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4092 ax-sep 4095 ax-nul 4103 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-iinf 4560 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-mulrcl 7844 ax-addcom 7845 ax-mulcom 7846 ax-addass 7847 ax-mulass 7848 ax-distr 7849 ax-i2m1 7850 ax-0lt1 7851 ax-1rid 7852 ax-0id 7853 ax-rnegex 7854 ax-precex 7855 ax-cnre 7856 ax-pre-ltirr 7857 ax-pre-ltwlin 7858 ax-pre-lttrn 7859 ax-pre-apti 7860 ax-pre-ltadd 7861 ax-pre-mulgt0 7862 ax-pre-mulext 7863 ax-arch 7864 ax-caucvg 7865 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-reu 2449 df-rmo 2450 df-rab 2451 df-v 2724 df-sbc 2948 df-csb 3042 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-if 3517 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-int 3820 df-iun 3863 df-br 3978 df-opab 4039 df-mpt 4040 df-tr 4076 df-id 4266 df-po 4269 df-iso 4270 df-iord 4339 df-on 4341 df-ilim 4342 df-suc 4344 df-iom 4563 df-xp 4605 df-rel 4606 df-cnv 4607 df-co 4608 df-dm 4609 df-rn 4610 df-res 4611 df-ima 4612 df-iota 5148 df-fun 5185 df-fn 5186 df-f 5187 df-f1 5188 df-fo 5189 df-f1o 5190 df-fv 5191 df-riota 5793 df-ov 5840 df-oprab 5841 df-mpo 5842 df-1st 6101 df-2nd 6102 df-recs 6265 df-frec 6351 df-1o 6376 df-2o 6377 df-er 6493 df-en 6699 df-sup 6941 df-pnf 7927 df-mnf 7928 df-xr 7929 df-ltxr 7930 df-le 7931 df-sub 8063 df-neg 8064 df-reap 8465 df-ap 8472 df-div 8561 df-inn 8850 df-2 8908 df-3 8909 df-4 8910 df-n0 9107 df-z 9184 df-uz 9459 df-q 9550 df-rp 9582 df-fz 9937 df-fzo 10069 df-fl 10196 df-mod 10249 df-seqfrec 10372 df-exp 10446 df-cj 10774 df-re 10775 df-im 10776 df-rsqrt 10930 df-abs 10931 df-dvds 11718 df-gcd 11865 df-prm 12029 |
This theorem is referenced by: pythagtriplem9 12194 pythagtriplem11 12195 pythagtriplem13 12197 |
Copyright terms: Public domain | W3C validator |