ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem7 Unicode version

Theorem pythagtriplem7 12780
Description: Lemma for pythagtrip 12792. Calculate  ( sqr `  ( C  +  B ) ). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  =  ( ( C  +  B )  gcd  A
) )

Proof of Theorem pythagtriplem7
StepHypRef Expression
1 simp3 1023 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  NN )
21nnzd 9556 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  ZZ )
3 simp2 1022 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  NN )
43nnzd 9556 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
52, 4zsubcld 9562 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  ZZ )
653ad2ant1 1042 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  ZZ )
71, 3nnaddcld 9146 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  NN )
87nnnn0d 9410 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  NN0 )
983ad2ant1 1042 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  NN0 )
10 nnnn0 9364 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  NN0 )
11103ad2ant1 1042 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  NN0 )
12113ad2ant1 1042 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  NN0 )
136, 9, 123jca 1201 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  e.  ZZ  /\  ( C  +  B
)  e.  NN0  /\  A  e.  NN0 ) )
14 pythagtriplem4 12777 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  -  B
)  gcd  ( C  +  B ) )  =  1 )
1514oveq1d 6009 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  gcd  A )  =  ( 1  gcd 
A ) )
16 nnz 9453 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  ZZ )
17163ad2ant1 1042 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
18173ad2ant1 1042 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  ZZ )
19 1gcd 12499 . . . . . . 7  |-  ( A  e.  ZZ  ->  (
1  gcd  A )  =  1 )
2018, 19syl 14 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
1  gcd  A )  =  1 )
2115, 20eqtrd 2262 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  gcd  ( C  +  B )
)  gcd  A )  =  1 )
2213, 21jca 306 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  -  B )  e.  ZZ  /\  ( C  +  B
)  e.  NN0  /\  A  e.  NN0 )  /\  ( ( ( C  -  B )  gcd  ( C  +  B
) )  gcd  A
)  =  1 ) )
23 oveq1 6001 . . . . . 6  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
24233ad2ant2 1043 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
25 nncn 9106 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  CC )
26253ad2ant1 1042 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
2726sqcld 10880 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
283nncnd 9112 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
2928sqcld 10880 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
3027, 29pncand 8446 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
31303ad2ant1 1042 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
321nncnd 9112 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  CC )
33 subsq 10855 . . . . . . . 8  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C ^
2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
3432, 28, 33syl2anc 411 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
357nncnd 9112 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  CC )
365zcnd 9558 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  CC )
3735, 36mulcomd 8156 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  +  B
)  x.  ( C  -  B ) )  =  ( ( C  -  B )  x.  ( C  +  B
) ) )
3834, 37eqtrd 2262 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  -  B )  x.  ( C  +  B
) ) )
39383ad2ant1 1042 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  -  B )  x.  ( C  +  B
) ) )
4024, 31, 393eqtr3d 2270 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( A ^ 2 )  =  ( ( C  -  B )  x.  ( C  +  B )
) )
41 coprimeprodsq2 12767 . . . 4  |-  ( ( ( ( C  -  B )  e.  ZZ  /\  ( C  +  B
)  e.  NN0  /\  A  e.  NN0 )  /\  ( ( ( C  -  B )  gcd  ( C  +  B
) )  gcd  A
)  =  1 )  ->  ( ( A ^ 2 )  =  ( ( C  -  B )  x.  ( C  +  B )
)  ->  ( C  +  B )  =  ( ( ( C  +  B )  gcd  A
) ^ 2 ) ) )
4222, 40, 41sylc 62 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  =  ( ( ( C  +  B )  gcd  A ) ^
2 ) )
4342fveq2d 5627 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  =  ( sqr `  (
( ( C  +  B )  gcd  A
) ^ 2 ) ) )
447nnzd 9556 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  ZZ )
45443ad2ant1 1042 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  ZZ )
4645, 18gcdcld 12475 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  gcd  A )  e.  NN0 )
4746nn0red 9411 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  gcd  A )  e.  RR )
4846nn0ge0d 9413 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( ( C  +  B )  gcd  A
) )
4947, 48sqrtsqd 11662 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( ( ( C  +  B )  gcd  A ) ^
2 ) )  =  ( ( C  +  B )  gcd  A
) )
5043, 49eqtrd 2262 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  =  ( ( C  +  B )  gcd  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   CCcc 7985   1c1 7988    + caddc 7990    x. cmul 7992    - cmin 8305   NNcn 9098   2c2 9149   NN0cn0 9357   ZZcz 9434   ^cexp 10747   sqrcsqrt 11493    || cdvds 12284    gcd cgcd 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461  df-prm 12616
This theorem is referenced by:  pythagtriplem9  12782  pythagtriplem11  12783  pythagtriplem13  12785
  Copyright terms: Public domain W3C validator