ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcld Unicode version

Theorem nnmulcld 8364
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nnge1d.1  |-  ( ph  ->  A  e.  NN )
nnmulcld.2  |-  ( ph  ->  B  e.  NN )
Assertion
Ref Expression
nnmulcld  |-  ( ph  ->  ( A  x.  B
)  e.  NN )

Proof of Theorem nnmulcld
StepHypRef Expression
1 nnge1d.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnmulcld.2 . 2  |-  ( ph  ->  B  e.  NN )
3 nnmulcl 8337 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
41, 2, 3syl2anc 403 1  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434  (class class class)co 5591    x. cmul 7258   NNcn 8316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-1rid 7355  ax-cnre 7359
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-iota 4934  df-fv 4977  df-ov 5594  df-inn 8317
This theorem is referenced by:  qbtwnre  9557  bcval  9992  bcm1k  10003  bcp1n  10004  permnn  10014  cvg1nlemcxze  10242  cvg1nlemf  10243  cvg1nlemcau  10244  cvg1nlemres  10245  modmulconst  10608  lcmval  10825  oddpwdclemxy  10927  oddpwdclemdc  10931  sqpweven  10933  2sqpwodd  10934  crth  10980  phimullem  10981  evenennn  10986
  Copyright terms: Public domain W3C validator