| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| nnmulcld.2 |
|
| Ref | Expression |
|---|---|
| nnmulcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnmulcld.2 |
. 2
| |
| 3 | nnmulcl 9059 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-1rid 8034 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 |
| This theorem is referenced by: qbtwnre 10401 bcval 10896 bcm1k 10907 bcp1n 10908 permnn 10918 cvg1nlemcxze 11326 cvg1nlemf 11327 cvg1nlemcau 11328 cvg1nlemres 11329 trireciplem 11844 efaddlem 12018 eftlub 12034 eirraplem 12121 modmulconst 12167 lcmval 12418 oddpwdclemxy 12524 oddpwdclemdc 12528 sqpweven 12530 2sqpwodd 12531 crth 12579 phimullem 12580 modprm0 12610 pcqmul 12659 pcaddlem 12695 pcbc 12707 oddprmdvds 12710 pockthlem 12712 pockthg 12713 4sqlem13m 12759 4sqlem14 12760 4sqlem17 12763 4sqlem18 12764 evenennn 12797 mpodvdsmulf1o 15495 fsumdvdsmul 15496 sgmmul 15501 gausslemma2dlem1a 15568 lgseisenlem2 15581 lgseisenlem4 15583 lgsquadlemsfi 15585 lgsquadlem2 15588 lgsquadlem3 15589 lgsquad2lem2 15592 2sqlem6 15630 |
| Copyright terms: Public domain | W3C validator |