| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| nnmulcld.2 |
|
| Ref | Expression |
|---|---|
| nnmulcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnmulcld.2 |
. 2
| |
| 3 | nnmulcl 9092 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-1rid 8067 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 |
| This theorem is referenced by: qbtwnre 10436 bcval 10931 bcm1k 10942 bcp1n 10943 permnn 10953 cvg1nlemcxze 11408 cvg1nlemf 11409 cvg1nlemcau 11410 cvg1nlemres 11411 trireciplem 11926 efaddlem 12100 eftlub 12116 eirraplem 12203 modmulconst 12249 lcmval 12500 oddpwdclemxy 12606 oddpwdclemdc 12610 sqpweven 12612 2sqpwodd 12613 crth 12661 phimullem 12662 modprm0 12692 pcqmul 12741 pcaddlem 12777 pcbc 12789 oddprmdvds 12792 pockthlem 12794 pockthg 12795 4sqlem13m 12841 4sqlem14 12842 4sqlem17 12845 4sqlem18 12846 evenennn 12879 mpodvdsmulf1o 15577 fsumdvdsmul 15578 sgmmul 15583 gausslemma2dlem1a 15650 lgseisenlem2 15663 lgseisenlem4 15665 lgsquadlemsfi 15667 lgsquadlem2 15670 lgsquadlem3 15671 lgsquad2lem2 15674 2sqlem6 15712 |
| Copyright terms: Public domain | W3C validator |