| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| nnmulcld.2 |
|
| Ref | Expression |
|---|---|
| nnmulcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnmulcld.2 |
. 2
| |
| 3 | nnmulcl 9057 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 |
| This theorem is referenced by: qbtwnre 10399 bcval 10894 bcm1k 10905 bcp1n 10906 permnn 10916 cvg1nlemcxze 11293 cvg1nlemf 11294 cvg1nlemcau 11295 cvg1nlemres 11296 trireciplem 11811 efaddlem 11985 eftlub 12001 eirraplem 12088 modmulconst 12134 lcmval 12385 oddpwdclemxy 12491 oddpwdclemdc 12495 sqpweven 12497 2sqpwodd 12498 crth 12546 phimullem 12547 modprm0 12577 pcqmul 12626 pcaddlem 12662 pcbc 12674 oddprmdvds 12677 pockthlem 12679 pockthg 12680 4sqlem13m 12726 4sqlem14 12727 4sqlem17 12730 4sqlem18 12731 evenennn 12764 mpodvdsmulf1o 15462 fsumdvdsmul 15463 sgmmul 15468 gausslemma2dlem1a 15535 lgseisenlem2 15548 lgseisenlem4 15550 lgsquadlemsfi 15552 lgsquadlem2 15555 lgsquadlem3 15556 lgsquad2lem2 15559 2sqlem6 15597 |
| Copyright terms: Public domain | W3C validator |