| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| nnmulcld.2 |
|
| Ref | Expression |
|---|---|
| nnmulcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnmulcld.2 |
. 2
| |
| 3 | nnmulcl 9014 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-1rid 7989 ax-cnre 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-inn 8994 |
| This theorem is referenced by: qbtwnre 10349 bcval 10844 bcm1k 10855 bcp1n 10856 permnn 10866 cvg1nlemcxze 11150 cvg1nlemf 11151 cvg1nlemcau 11152 cvg1nlemres 11153 trireciplem 11668 efaddlem 11842 eftlub 11858 eirraplem 11945 modmulconst 11991 lcmval 12242 oddpwdclemxy 12348 oddpwdclemdc 12352 sqpweven 12354 2sqpwodd 12355 crth 12403 phimullem 12404 modprm0 12434 pcqmul 12483 pcaddlem 12519 pcbc 12531 oddprmdvds 12534 pockthlem 12536 pockthg 12537 4sqlem13m 12583 4sqlem14 12584 4sqlem17 12587 4sqlem18 12588 evenennn 12621 mpodvdsmulf1o 15252 fsumdvdsmul 15253 sgmmul 15258 gausslemma2dlem1a 15325 lgseisenlem2 15338 lgseisenlem4 15340 lgsquadlemsfi 15342 lgsquadlem2 15345 lgsquadlem3 15346 lgsquad2lem2 15349 2sqlem6 15387 |
| Copyright terms: Public domain | W3C validator |