| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcld | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnge1d.1 |
|
| nnmulcld.2 |
|
| Ref | Expression |
|---|---|
| nnmulcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnge1d.1 |
. 2
| |
| 2 | nnmulcld.2 |
. 2
| |
| 3 | nnmulcl 9131 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-1rid 8106 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 |
| This theorem is referenced by: qbtwnre 10476 bcval 10971 bcm1k 10982 bcp1n 10983 permnn 10993 cvg1nlemcxze 11493 cvg1nlemf 11494 cvg1nlemcau 11495 cvg1nlemres 11496 trireciplem 12011 efaddlem 12185 eftlub 12201 eirraplem 12288 modmulconst 12334 lcmval 12585 oddpwdclemxy 12691 oddpwdclemdc 12695 sqpweven 12697 2sqpwodd 12698 crth 12746 phimullem 12747 modprm0 12777 pcqmul 12826 pcaddlem 12862 pcbc 12874 oddprmdvds 12877 pockthlem 12879 pockthg 12880 4sqlem13m 12926 4sqlem14 12927 4sqlem17 12930 4sqlem18 12931 evenennn 12964 mpodvdsmulf1o 15664 fsumdvdsmul 15665 sgmmul 15670 gausslemma2dlem1a 15737 lgseisenlem2 15750 lgseisenlem4 15752 lgsquadlemsfi 15754 lgsquadlem2 15757 lgsquadlem3 15758 lgsquad2lem2 15761 2sqlem6 15799 |
| Copyright terms: Public domain | W3C validator |