Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xlt2add | Unicode version |
Description: Extended real version of lt2add 8364. Note that ltleadd 8365, which has weaker assumptions, is not true for the extended reals (since fails). (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xlt2add |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xaddcl 9817 | . . . . . . . 8 | |
2 | 1 | 3ad2ant1 1013 | . . . . . . 7 |
3 | 2 | adantr 274 | . . . . . 6 |
4 | simp1l 1016 | . . . . . . . 8 | |
5 | simp2r 1019 | . . . . . . . 8 | |
6 | xaddcl 9817 | . . . . . . . 8 | |
7 | 4, 5, 6 | syl2anc 409 | . . . . . . 7 |
8 | 7 | adantr 274 | . . . . . 6 |
9 | xaddcl 9817 | . . . . . . . 8 | |
10 | 9 | 3ad2ant2 1014 | . . . . . . 7 |
11 | 10 | adantr 274 | . . . . . 6 |
12 | simp3r 1021 | . . . . . . . 8 | |
13 | 12 | adantr 274 | . . . . . . 7 |
14 | simp1r 1017 | . . . . . . . . 9 | |
15 | 14 | adantr 274 | . . . . . . . 8 |
16 | 5 | adantr 274 | . . . . . . . 8 |
17 | simprl 526 | . . . . . . . 8 | |
18 | xltadd2 9834 | . . . . . . . 8 | |
19 | 15, 16, 17, 18 | syl3anc 1233 | . . . . . . 7 |
20 | 13, 19 | mpbid 146 | . . . . . 6 |
21 | simp3l 1020 | . . . . . . . 8 | |
22 | 21 | adantr 274 | . . . . . . 7 |
23 | 4 | adantr 274 | . . . . . . . 8 |
24 | simp2l 1018 | . . . . . . . . 9 | |
25 | 24 | adantr 274 | . . . . . . . 8 |
26 | simprr 527 | . . . . . . . 8 | |
27 | xltadd1 9833 | . . . . . . . 8 | |
28 | 23, 25, 26, 27 | syl3anc 1233 | . . . . . . 7 |
29 | 22, 28 | mpbid 146 | . . . . . 6 |
30 | 3, 8, 11, 20, 29 | xrlttrd 9766 | . . . . 5 |
31 | 30 | anassrs 398 | . . . 4 |
32 | pnfxr 7972 | . . . . . . . . . . . 12 | |
33 | 32 | a1i 9 | . . . . . . . . . . 11 |
34 | pnfge 9746 | . . . . . . . . . . . 12 | |
35 | 24, 34 | syl 14 | . . . . . . . . . . 11 |
36 | 4, 24, 33, 21, 35 | xrltletrd 9768 | . . . . . . . . . 10 |
37 | npnflt 9772 | . . . . . . . . . . 11 | |
38 | 4, 37 | syl 14 | . . . . . . . . . 10 |
39 | 36, 38 | mpbid 146 | . . . . . . . . 9 |
40 | pnfge 9746 | . . . . . . . . . . . 12 | |
41 | 5, 40 | syl 14 | . . . . . . . . . . 11 |
42 | 14, 5, 33, 12, 41 | xrltletrd 9768 | . . . . . . . . . 10 |
43 | npnflt 9772 | . . . . . . . . . . 11 | |
44 | 14, 43 | syl 14 | . . . . . . . . . 10 |
45 | 42, 44 | mpbid 146 | . . . . . . . . 9 |
46 | xaddnepnf 9815 | . . . . . . . . 9 | |
47 | 4, 39, 14, 45, 46 | syl22anc 1234 | . . . . . . . 8 |
48 | npnflt 9772 | . . . . . . . . 9 | |
49 | 2, 48 | syl 14 | . . . . . . . 8 |
50 | 47, 49 | mpbird 166 | . . . . . . 7 |
51 | 50 | adantr 274 | . . . . . 6 |
52 | oveq2 5861 | . . . . . . 7 | |
53 | mnfxr 7976 | . . . . . . . . . . 11 | |
54 | 53 | a1i 9 | . . . . . . . . . 10 |
55 | mnfle 9749 | . . . . . . . . . . 11 | |
56 | 4, 55 | syl 14 | . . . . . . . . . 10 |
57 | 54, 4, 24, 56, 21 | xrlelttrd 9767 | . . . . . . . . 9 |
58 | nmnfgt 9775 | . . . . . . . . . 10 | |
59 | 24, 58 | syl 14 | . . . . . . . . 9 |
60 | 57, 59 | mpbid 146 | . . . . . . . 8 |
61 | xaddpnf1 9803 | . . . . . . . 8 | |
62 | 24, 60, 61 | syl2anc 409 | . . . . . . 7 |
63 | 52, 62 | sylan9eqr 2225 | . . . . . 6 |
64 | 51, 63 | breqtrrd 4017 | . . . . 5 |
65 | 64 | adantlr 474 | . . . 4 |
66 | simpr 109 | . . . . . 6 | |
67 | mnfle 9749 | . . . . . . . . . 10 | |
68 | 14, 67 | syl 14 | . . . . . . . . 9 |
69 | 54, 14, 5, 68, 12 | xrlelttrd 9767 | . . . . . . . 8 |
70 | nmnfgt 9775 | . . . . . . . . 9 | |
71 | 5, 70 | syl 14 | . . . . . . . 8 |
72 | 69, 71 | mpbid 146 | . . . . . . 7 |
73 | 72 | adantr 274 | . . . . . 6 |
74 | 66, 73 | pm2.21ddne 2423 | . . . . 5 |
75 | 74 | adantlr 474 | . . . 4 |
76 | elxr 9733 | . . . . . 6 | |
77 | 5, 76 | sylib 121 | . . . . 5 |
78 | 77 | adantr 274 | . . . 4 |
79 | 31, 65, 75, 78 | mpjao3dan 1302 | . . 3 |
80 | simpr 109 | . . . 4 | |
81 | 39 | adantr 274 | . . . 4 |
82 | 80, 81 | pm2.21ddne 2423 | . . 3 |
83 | oveq1 5860 | . . . . 5 | |
84 | xaddmnf2 9806 | . . . . . 6 | |
85 | 14, 45, 84 | syl2anc 409 | . . . . 5 |
86 | 83, 85 | sylan9eqr 2225 | . . . 4 |
87 | xaddnemnf 9814 | . . . . . . 7 | |
88 | 24, 60, 5, 72, 87 | syl22anc 1234 | . . . . . 6 |
89 | nmnfgt 9775 | . . . . . . 7 | |
90 | 10, 89 | syl 14 | . . . . . 6 |
91 | 88, 90 | mpbird 166 | . . . . 5 |
92 | 91 | adantr 274 | . . . 4 |
93 | 86, 92 | eqbrtrd 4011 | . . 3 |
94 | elxr 9733 | . . . 4 | |
95 | 4, 94 | sylib 121 | . . 3 |
96 | 79, 82, 93, 95 | mpjao3dan 1302 | . 2 |
97 | 96 | 3expia 1200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3o 972 w3a 973 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cr 7773 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-xadd 9730 |
This theorem is referenced by: bldisj 13195 |
Copyright terms: Public domain | W3C validator |