ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xlt2add Unicode version

Theorem xlt2add 10072
Description: Extended real version of lt2add 8588. Note that ltleadd 8589, which has weaker assumptions, is not true for the extended reals (since  0  + +oo  <  1  + +oo fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xlt2add  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <  C  /\  B  <  D )  ->  ( A +e B )  <  ( C +e D ) ) )

Proof of Theorem xlt2add
StepHypRef Expression
1 xaddcl 10052 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
213ad2ant1 1042 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  e.  RR* )
32adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  e.  RR* )
4 simp1l 1045 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  e.  RR* )
5 simp2r 1048 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  e.  RR* )
6 xaddcl 10052 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  D  e.  RR* )  ->  ( A +e D )  e.  RR* )
74, 5, 6syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e D )  e.  RR* )
87adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e D )  e.  RR* )
9 xaddcl 10052 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C +e D )  e.  RR* )
1093ad2ant2 1043 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e D )  e.  RR* )
1110adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( C +e D )  e.  RR* )
12 simp3r 1050 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  <  D )
1312adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  B  <  D )
14 simp1r 1046 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  e.  RR* )
1514adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR* )
165adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR* )
17 simprl 529 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
18 xltadd2 10069 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  D  e.  RR*  /\  A  e.  RR )  ->  ( B  <  D  <->  ( A +e B )  <  ( A +e D ) ) )
1915, 16, 17, 18syl3anc 1271 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( B  <  D  <->  ( A +e B )  < 
( A +e
D ) ) )
2013, 19mpbid 147 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  <  ( A +e D ) )
21 simp3l 1049 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  <  C )
2221adantr 276 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  <  C )
234adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR* )
24 simp2l 1047 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  e.  RR* )
2524adantr 276 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR* )
26 simprr 531 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
27 xltadd1 10068 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  D  e.  RR )  ->  ( A  <  C  <->  ( A +e D )  <  ( C +e D ) ) )
2823, 25, 26, 27syl3anc 1271 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A  <  C  <->  ( A +e D )  < 
( C +e
D ) ) )
2922, 28mpbid 147 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e D )  <  ( C +e D ) )
303, 8, 11, 20, 29xrlttrd 10001 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  <  ( C +e D ) )
3130anassrs 400 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  e.  RR )  ->  ( A +e B )  < 
( C +e
D ) )
32 pnfxr 8195 . . . . . . . . . . . 12  |- +oo  e.  RR*
3332a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> +oo  e.  RR* )
34 pnfge 9981 . . . . . . . . . . . 12  |-  ( C  e.  RR*  ->  C  <_ +oo )
3524, 34syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  <_ +oo )
364, 24, 33, 21, 35xrltletrd 10003 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  < +oo )
37 npnflt 10007 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  ( A  < +oo  <->  A  =/= +oo )
)
384, 37syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A  < +oo  <->  A  =/= +oo )
)
3936, 38mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  =/= +oo )
40 pnfge 9981 . . . . . . . . . . . 12  |-  ( D  e.  RR*  ->  D  <_ +oo )
415, 40syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  <_ +oo )
4214, 5, 33, 12, 41xrltletrd 10003 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  < +oo )
43 npnflt 10007 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  ( B  < +oo  <->  B  =/= +oo )
)
4414, 43syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( B  < +oo  <->  B  =/= +oo )
)
4542, 44mpbid 147 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  =/= +oo )
46 xaddnepnf 10050 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )
474, 39, 14, 45, 46syl22anc 1272 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  =/= +oo )
48 npnflt 10007 . . . . . . . . 9  |-  ( ( A +e B )  e.  RR*  ->  ( ( A +e
B )  < +oo  <->  ( A +e B )  =/= +oo ) )
492, 48syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( ( A +e B )  < +oo  <->  ( A +e B )  =/= +oo ) )
5047, 49mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  < +oo )
5150adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( A +e
B )  < +oo )
52 oveq2 6008 . . . . . . 7  |-  ( D  = +oo  ->  ( C +e D )  =  ( C +e +oo ) )
53 mnfxr 8199 . . . . . . . . . . 11  |- -oo  e.  RR*
5453a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  e.  RR* )
55 mnfle 9984 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> -oo  <_  A )
564, 55syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <_  A
)
5754, 4, 24, 56, 21xrlelttrd 10002 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  C
)
58 nmnfgt 10010 . . . . . . . . . 10  |-  ( C  e.  RR*  ->  ( -oo  <  C  <->  C  =/= -oo )
)
5924, 58syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  C  <->  C  =/= -oo )
)
6057, 59mpbid 147 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  =/= -oo )
61 xaddpnf1 10038 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( C +e +oo )  = +oo )
6224, 60, 61syl2anc 411 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e +oo )  = +oo )
6352, 62sylan9eqr 2284 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( C +e
D )  = +oo )
6451, 63breqtrrd 4110 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( A +e
B )  <  ( C +e D ) )
6564adantlr 477 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  = +oo )  ->  ( A +e B )  < 
( C +e
D ) )
66 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = -oo )  ->  D  = -oo )
67 mnfle 9984 . . . . . . . . . 10  |-  ( B  e.  RR*  -> -oo  <_  B )
6814, 67syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <_  B
)
6954, 14, 5, 68, 12xrlelttrd 10002 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  D
)
70 nmnfgt 10010 . . . . . . . . 9  |-  ( D  e.  RR*  ->  ( -oo  <  D  <->  D  =/= -oo )
)
715, 70syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  D  <->  D  =/= -oo )
)
7269, 71mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  =/= -oo )
7372adantr 276 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = -oo )  ->  D  =/= -oo )
7466, 73pm2.21ddne 2483 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = -oo )  ->  ( A +e
B )  <  ( C +e D ) )
7574adantlr 477 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  = -oo )  ->  ( A +e B )  < 
( C +e
D ) )
76 elxr 9968 . . . . . 6  |-  ( D  e.  RR*  <->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
775, 76sylib 122 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
7877adantr 276 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  ->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
7931, 65, 75, 78mpjao3dan 1341 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  ->  ( A +e
B )  <  ( C +e D ) )
80 simpr 110 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = +oo )  ->  A  = +oo )
8139adantr 276 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = +oo )  ->  A  =/= +oo )
8280, 81pm2.21ddne 2483 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = +oo )  ->  ( A +e
B )  <  ( C +e D ) )
83 oveq1 6007 . . . . 5  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
84 xaddmnf2 10041 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
8514, 45, 84syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo +e B )  = -oo )
8683, 85sylan9eqr 2284 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  ->  ( A +e
B )  = -oo )
87 xaddnemnf 10049 . . . . . . 7  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( C +e D )  =/= -oo )
8824, 60, 5, 72, 87syl22anc 1272 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e D )  =/= -oo )
89 nmnfgt 10010 . . . . . . 7  |-  ( ( C +e D )  e.  RR*  ->  ( -oo  <  ( C +e D )  <-> 
( C +e
D )  =/= -oo ) )
9010, 89syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  ( C +e
D )  <->  ( C +e D )  =/= -oo ) )
9188, 90mpbird 167 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  ( C +e D ) )
9291adantr 276 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  -> -oo  <  ( C +e D ) )
9386, 92eqbrtrd 4104 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  ->  ( A +e
B )  <  ( C +e D ) )
94 elxr 9968 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
954, 94sylib 122 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
9679, 82, 93, 95mpjao3dan 1341 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  <  ( C +e D ) )
97963expia 1229 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <  C  /\  B  <  D )  ->  ( A +e B )  <  ( C +e D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 1001    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4082  (class class class)co 6000   RRcr 7994   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176    < clt 8177    <_ cle 8178   +ecxad 9962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-xadd 9965
This theorem is referenced by:  bldisj  15069
  Copyright terms: Public domain W3C validator