Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xlt2add | Unicode version |
Description: Extended real version of lt2add 8343. Note that ltleadd 8344, which has weaker assumptions, is not true for the extended reals (since fails). (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xlt2add |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xaddcl 9796 | . . . . . . . 8 | |
2 | 1 | 3ad2ant1 1008 | . . . . . . 7 |
3 | 2 | adantr 274 | . . . . . 6 |
4 | simp1l 1011 | . . . . . . . 8 | |
5 | simp2r 1014 | . . . . . . . 8 | |
6 | xaddcl 9796 | . . . . . . . 8 | |
7 | 4, 5, 6 | syl2anc 409 | . . . . . . 7 |
8 | 7 | adantr 274 | . . . . . 6 |
9 | xaddcl 9796 | . . . . . . . 8 | |
10 | 9 | 3ad2ant2 1009 | . . . . . . 7 |
11 | 10 | adantr 274 | . . . . . 6 |
12 | simp3r 1016 | . . . . . . . 8 | |
13 | 12 | adantr 274 | . . . . . . 7 |
14 | simp1r 1012 | . . . . . . . . 9 | |
15 | 14 | adantr 274 | . . . . . . . 8 |
16 | 5 | adantr 274 | . . . . . . . 8 |
17 | simprl 521 | . . . . . . . 8 | |
18 | xltadd2 9813 | . . . . . . . 8 | |
19 | 15, 16, 17, 18 | syl3anc 1228 | . . . . . . 7 |
20 | 13, 19 | mpbid 146 | . . . . . 6 |
21 | simp3l 1015 | . . . . . . . 8 | |
22 | 21 | adantr 274 | . . . . . . 7 |
23 | 4 | adantr 274 | . . . . . . . 8 |
24 | simp2l 1013 | . . . . . . . . 9 | |
25 | 24 | adantr 274 | . . . . . . . 8 |
26 | simprr 522 | . . . . . . . 8 | |
27 | xltadd1 9812 | . . . . . . . 8 | |
28 | 23, 25, 26, 27 | syl3anc 1228 | . . . . . . 7 |
29 | 22, 28 | mpbid 146 | . . . . . 6 |
30 | 3, 8, 11, 20, 29 | xrlttrd 9745 | . . . . 5 |
31 | 30 | anassrs 398 | . . . 4 |
32 | pnfxr 7951 | . . . . . . . . . . . 12 | |
33 | 32 | a1i 9 | . . . . . . . . . . 11 |
34 | pnfge 9725 | . . . . . . . . . . . 12 | |
35 | 24, 34 | syl 14 | . . . . . . . . . . 11 |
36 | 4, 24, 33, 21, 35 | xrltletrd 9747 | . . . . . . . . . 10 |
37 | npnflt 9751 | . . . . . . . . . . 11 | |
38 | 4, 37 | syl 14 | . . . . . . . . . 10 |
39 | 36, 38 | mpbid 146 | . . . . . . . . 9 |
40 | pnfge 9725 | . . . . . . . . . . . 12 | |
41 | 5, 40 | syl 14 | . . . . . . . . . . 11 |
42 | 14, 5, 33, 12, 41 | xrltletrd 9747 | . . . . . . . . . 10 |
43 | npnflt 9751 | . . . . . . . . . . 11 | |
44 | 14, 43 | syl 14 | . . . . . . . . . 10 |
45 | 42, 44 | mpbid 146 | . . . . . . . . 9 |
46 | xaddnepnf 9794 | . . . . . . . . 9 | |
47 | 4, 39, 14, 45, 46 | syl22anc 1229 | . . . . . . . 8 |
48 | npnflt 9751 | . . . . . . . . 9 | |
49 | 2, 48 | syl 14 | . . . . . . . 8 |
50 | 47, 49 | mpbird 166 | . . . . . . 7 |
51 | 50 | adantr 274 | . . . . . 6 |
52 | oveq2 5850 | . . . . . . 7 | |
53 | mnfxr 7955 | . . . . . . . . . . 11 | |
54 | 53 | a1i 9 | . . . . . . . . . 10 |
55 | mnfle 9728 | . . . . . . . . . . 11 | |
56 | 4, 55 | syl 14 | . . . . . . . . . 10 |
57 | 54, 4, 24, 56, 21 | xrlelttrd 9746 | . . . . . . . . 9 |
58 | nmnfgt 9754 | . . . . . . . . . 10 | |
59 | 24, 58 | syl 14 | . . . . . . . . 9 |
60 | 57, 59 | mpbid 146 | . . . . . . . 8 |
61 | xaddpnf1 9782 | . . . . . . . 8 | |
62 | 24, 60, 61 | syl2anc 409 | . . . . . . 7 |
63 | 52, 62 | sylan9eqr 2221 | . . . . . 6 |
64 | 51, 63 | breqtrrd 4010 | . . . . 5 |
65 | 64 | adantlr 469 | . . . 4 |
66 | simpr 109 | . . . . . 6 | |
67 | mnfle 9728 | . . . . . . . . . 10 | |
68 | 14, 67 | syl 14 | . . . . . . . . 9 |
69 | 54, 14, 5, 68, 12 | xrlelttrd 9746 | . . . . . . . 8 |
70 | nmnfgt 9754 | . . . . . . . . 9 | |
71 | 5, 70 | syl 14 | . . . . . . . 8 |
72 | 69, 71 | mpbid 146 | . . . . . . 7 |
73 | 72 | adantr 274 | . . . . . 6 |
74 | 66, 73 | pm2.21ddne 2419 | . . . . 5 |
75 | 74 | adantlr 469 | . . . 4 |
76 | elxr 9712 | . . . . . 6 | |
77 | 5, 76 | sylib 121 | . . . . 5 |
78 | 77 | adantr 274 | . . . 4 |
79 | 31, 65, 75, 78 | mpjao3dan 1297 | . . 3 |
80 | simpr 109 | . . . 4 | |
81 | 39 | adantr 274 | . . . 4 |
82 | 80, 81 | pm2.21ddne 2419 | . . 3 |
83 | oveq1 5849 | . . . . 5 | |
84 | xaddmnf2 9785 | . . . . . 6 | |
85 | 14, 45, 84 | syl2anc 409 | . . . . 5 |
86 | 83, 85 | sylan9eqr 2221 | . . . 4 |
87 | xaddnemnf 9793 | . . . . . . 7 | |
88 | 24, 60, 5, 72, 87 | syl22anc 1229 | . . . . . 6 |
89 | nmnfgt 9754 | . . . . . . 7 | |
90 | 10, 89 | syl 14 | . . . . . 6 |
91 | 88, 90 | mpbird 166 | . . . . 5 |
92 | 91 | adantr 274 | . . . 4 |
93 | 86, 92 | eqbrtrd 4004 | . . 3 |
94 | elxr 9712 | . . . 4 | |
95 | 4, 94 | sylib 121 | . . 3 |
96 | 79, 82, 93, 95 | mpjao3dan 1297 | . 2 |
97 | 96 | 3expia 1195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3o 967 w3a 968 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 (class class class)co 5842 cr 7752 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cle 7934 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-xadd 9709 |
This theorem is referenced by: bldisj 13051 |
Copyright terms: Public domain | W3C validator |