ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xlt2add Unicode version

Theorem xlt2add 9816
Description: Extended real version of lt2add 8343. Note that ltleadd 8344, which has weaker assumptions, is not true for the extended reals (since  0  + +oo  <  1  + +oo fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xlt2add  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <  C  /\  B  <  D )  ->  ( A +e B )  <  ( C +e D ) ) )

Proof of Theorem xlt2add
StepHypRef Expression
1 xaddcl 9796 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
213ad2ant1 1008 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  e.  RR* )
32adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  e.  RR* )
4 simp1l 1011 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  e.  RR* )
5 simp2r 1014 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  e.  RR* )
6 xaddcl 9796 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  D  e.  RR* )  ->  ( A +e D )  e.  RR* )
74, 5, 6syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e D )  e.  RR* )
87adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e D )  e.  RR* )
9 xaddcl 9796 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  D  e.  RR* )  ->  ( C +e D )  e.  RR* )
1093ad2ant2 1009 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e D )  e.  RR* )
1110adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( C +e D )  e.  RR* )
12 simp3r 1016 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  <  D )
1312adantr 274 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  B  <  D )
14 simp1r 1012 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  e.  RR* )
1514adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR* )
165adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR* )
17 simprl 521 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
18 xltadd2 9813 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  D  e.  RR*  /\  A  e.  RR )  ->  ( B  <  D  <->  ( A +e B )  <  ( A +e D ) ) )
1915, 16, 17, 18syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( B  <  D  <->  ( A +e B )  < 
( A +e
D ) ) )
2013, 19mpbid 146 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  <  ( A +e D ) )
21 simp3l 1015 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  <  C )
2221adantr 274 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  <  C )
234adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR* )
24 simp2l 1013 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  e.  RR* )
2524adantr 274 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR* )
26 simprr 522 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
27 xltadd1 9812 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  D  e.  RR )  ->  ( A  <  C  <->  ( A +e D )  <  ( C +e D ) ) )
2823, 25, 26, 27syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A  <  C  <->  ( A +e D )  < 
( C +e
D ) ) )
2922, 28mpbid 146 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e D )  <  ( C +e D ) )
303, 8, 11, 20, 29xrlttrd 9745 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  ( A  e.  RR  /\  D  e.  RR ) )  ->  ( A +e B )  <  ( C +e D ) )
3130anassrs 398 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  e.  RR )  ->  ( A +e B )  < 
( C +e
D ) )
32 pnfxr 7951 . . . . . . . . . . . 12  |- +oo  e.  RR*
3332a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> +oo  e.  RR* )
34 pnfge 9725 . . . . . . . . . . . 12  |-  ( C  e.  RR*  ->  C  <_ +oo )
3524, 34syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  <_ +oo )
364, 24, 33, 21, 35xrltletrd 9747 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  < +oo )
37 npnflt 9751 . . . . . . . . . . 11  |-  ( A  e.  RR*  ->  ( A  < +oo  <->  A  =/= +oo )
)
384, 37syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A  < +oo  <->  A  =/= +oo )
)
3936, 38mpbid 146 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  A  =/= +oo )
40 pnfge 9725 . . . . . . . . . . . 12  |-  ( D  e.  RR*  ->  D  <_ +oo )
415, 40syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  <_ +oo )
4214, 5, 33, 12, 41xrltletrd 9747 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  < +oo )
43 npnflt 9751 . . . . . . . . . . 11  |-  ( B  e.  RR*  ->  ( B  < +oo  <->  B  =/= +oo )
)
4414, 43syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( B  < +oo  <->  B  =/= +oo )
)
4542, 44mpbid 146 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  B  =/= +oo )
46 xaddnepnf 9794 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )
474, 39, 14, 45, 46syl22anc 1229 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  =/= +oo )
48 npnflt 9751 . . . . . . . . 9  |-  ( ( A +e B )  e.  RR*  ->  ( ( A +e
B )  < +oo  <->  ( A +e B )  =/= +oo ) )
492, 48syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( ( A +e B )  < +oo  <->  ( A +e B )  =/= +oo ) )
5047, 49mpbird 166 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  < +oo )
5150adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( A +e
B )  < +oo )
52 oveq2 5850 . . . . . . 7  |-  ( D  = +oo  ->  ( C +e D )  =  ( C +e +oo ) )
53 mnfxr 7955 . . . . . . . . . . 11  |- -oo  e.  RR*
5453a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  e.  RR* )
55 mnfle 9728 . . . . . . . . . . 11  |-  ( A  e.  RR*  -> -oo  <_  A )
564, 55syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <_  A
)
5754, 4, 24, 56, 21xrlelttrd 9746 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  C
)
58 nmnfgt 9754 . . . . . . . . . 10  |-  ( C  e.  RR*  ->  ( -oo  <  C  <->  C  =/= -oo )
)
5924, 58syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  C  <->  C  =/= -oo )
)
6057, 59mpbid 146 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  C  =/= -oo )
61 xaddpnf1 9782 . . . . . . . 8  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( C +e +oo )  = +oo )
6224, 60, 61syl2anc 409 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e +oo )  = +oo )
6352, 62sylan9eqr 2221 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( C +e
D )  = +oo )
6451, 63breqtrrd 4010 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = +oo )  ->  ( A +e
B )  <  ( C +e D ) )
6564adantlr 469 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  = +oo )  ->  ( A +e B )  < 
( C +e
D ) )
66 simpr 109 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = -oo )  ->  D  = -oo )
67 mnfle 9728 . . . . . . . . . 10  |-  ( B  e.  RR*  -> -oo  <_  B )
6814, 67syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <_  B
)
6954, 14, 5, 68, 12xrlelttrd 9746 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  D
)
70 nmnfgt 9754 . . . . . . . . 9  |-  ( D  e.  RR*  ->  ( -oo  <  D  <->  D  =/= -oo )
)
715, 70syl 14 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  D  <->  D  =/= -oo )
)
7269, 71mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  D  =/= -oo )
7372adantr 274 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = -oo )  ->  D  =/= -oo )
7466, 73pm2.21ddne 2419 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  D  = -oo )  ->  ( A +e
B )  <  ( C +e D ) )
7574adantlr 469 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  /\  D  = -oo )  ->  ( A +e B )  < 
( C +e
D ) )
76 elxr 9712 . . . . . 6  |-  ( D  e.  RR*  <->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
775, 76sylib 121 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
7877adantr 274 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  ->  ( D  e.  RR  \/  D  = +oo  \/  D  = -oo ) )
7931, 65, 75, 78mpjao3dan 1297 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  e.  RR )  ->  ( A +e
B )  <  ( C +e D ) )
80 simpr 109 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = +oo )  ->  A  = +oo )
8139adantr 274 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = +oo )  ->  A  =/= +oo )
8280, 81pm2.21ddne 2419 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = +oo )  ->  ( A +e
B )  <  ( C +e D ) )
83 oveq1 5849 . . . . 5  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
84 xaddmnf2 9785 . . . . . 6  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
8514, 45, 84syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo +e B )  = -oo )
8683, 85sylan9eqr 2221 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  ->  ( A +e
B )  = -oo )
87 xaddnemnf 9793 . . . . . . 7  |-  ( ( ( C  e.  RR*  /\  C  =/= -oo )  /\  ( D  e.  RR*  /\  D  =/= -oo )
)  ->  ( C +e D )  =/= -oo )
8824, 60, 5, 72, 87syl22anc 1229 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( C +e D )  =/= -oo )
89 nmnfgt 9754 . . . . . . 7  |-  ( ( C +e D )  e.  RR*  ->  ( -oo  <  ( C +e D )  <-> 
( C +e
D )  =/= -oo ) )
9010, 89syl 14 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( -oo  <  ( C +e
D )  <->  ( C +e D )  =/= -oo ) )
9188, 90mpbird 166 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  -> -oo  <  ( C +e D ) )
9291adantr 274 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  -> -oo  <  ( C +e D ) )
9386, 92eqbrtrd 4004 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <  C  /\  B  <  D ) )  /\  A  = -oo )  ->  ( A +e
B )  <  ( C +e D ) )
94 elxr 9712 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
954, 94sylib 121 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
9679, 82, 93, 95mpjao3dan 1297 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )  /\  ( A  <  C  /\  B  <  D ) )  ->  ( A +e B )  <  ( C +e D ) )
97963expia 1195 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* )
)  ->  ( ( A  <  C  /\  B  <  D )  ->  ( A +e B )  <  ( C +e D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 967    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982  (class class class)co 5842   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932    < clt 7933    <_ cle 7934   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-xadd 9709
This theorem is referenced by:  bldisj  13051
  Copyright terms: Public domain W3C validator