| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xlt2add | Unicode version | ||
| Description: Extended real version of
lt2add 8588. Note that ltleadd 8589, which has
weaker assumptions, is not true for the extended reals (since
|
| Ref | Expression |
|---|---|
| xlt2add |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xaddcl 10052 |
. . . . . . . 8
| |
| 2 | 1 | 3ad2ant1 1042 |
. . . . . . 7
|
| 3 | 2 | adantr 276 |
. . . . . 6
|
| 4 | simp1l 1045 |
. . . . . . . 8
| |
| 5 | simp2r 1048 |
. . . . . . . 8
| |
| 6 | xaddcl 10052 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | syl2anc 411 |
. . . . . . 7
|
| 8 | 7 | adantr 276 |
. . . . . 6
|
| 9 | xaddcl 10052 |
. . . . . . . 8
| |
| 10 | 9 | 3ad2ant2 1043 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | simp3r 1050 |
. . . . . . . 8
| |
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | simp1r 1046 |
. . . . . . . . 9
| |
| 15 | 14 | adantr 276 |
. . . . . . . 8
|
| 16 | 5 | adantr 276 |
. . . . . . . 8
|
| 17 | simprl 529 |
. . . . . . . 8
| |
| 18 | xltadd2 10069 |
. . . . . . . 8
| |
| 19 | 15, 16, 17, 18 | syl3anc 1271 |
. . . . . . 7
|
| 20 | 13, 19 | mpbid 147 |
. . . . . 6
|
| 21 | simp3l 1049 |
. . . . . . . 8
| |
| 22 | 21 | adantr 276 |
. . . . . . 7
|
| 23 | 4 | adantr 276 |
. . . . . . . 8
|
| 24 | simp2l 1047 |
. . . . . . . . 9
| |
| 25 | 24 | adantr 276 |
. . . . . . . 8
|
| 26 | simprr 531 |
. . . . . . . 8
| |
| 27 | xltadd1 10068 |
. . . . . . . 8
| |
| 28 | 23, 25, 26, 27 | syl3anc 1271 |
. . . . . . 7
|
| 29 | 22, 28 | mpbid 147 |
. . . . . 6
|
| 30 | 3, 8, 11, 20, 29 | xrlttrd 10001 |
. . . . 5
|
| 31 | 30 | anassrs 400 |
. . . 4
|
| 32 | pnfxr 8195 |
. . . . . . . . . . . 12
| |
| 33 | 32 | a1i 9 |
. . . . . . . . . . 11
|
| 34 | pnfge 9981 |
. . . . . . . . . . . 12
| |
| 35 | 24, 34 | syl 14 |
. . . . . . . . . . 11
|
| 36 | 4, 24, 33, 21, 35 | xrltletrd 10003 |
. . . . . . . . . 10
|
| 37 | npnflt 10007 |
. . . . . . . . . . 11
| |
| 38 | 4, 37 | syl 14 |
. . . . . . . . . 10
|
| 39 | 36, 38 | mpbid 147 |
. . . . . . . . 9
|
| 40 | pnfge 9981 |
. . . . . . . . . . . 12
| |
| 41 | 5, 40 | syl 14 |
. . . . . . . . . . 11
|
| 42 | 14, 5, 33, 12, 41 | xrltletrd 10003 |
. . . . . . . . . 10
|
| 43 | npnflt 10007 |
. . . . . . . . . . 11
| |
| 44 | 14, 43 | syl 14 |
. . . . . . . . . 10
|
| 45 | 42, 44 | mpbid 147 |
. . . . . . . . 9
|
| 46 | xaddnepnf 10050 |
. . . . . . . . 9
| |
| 47 | 4, 39, 14, 45, 46 | syl22anc 1272 |
. . . . . . . 8
|
| 48 | npnflt 10007 |
. . . . . . . . 9
| |
| 49 | 2, 48 | syl 14 |
. . . . . . . 8
|
| 50 | 47, 49 | mpbird 167 |
. . . . . . 7
|
| 51 | 50 | adantr 276 |
. . . . . 6
|
| 52 | oveq2 6008 |
. . . . . . 7
| |
| 53 | mnfxr 8199 |
. . . . . . . . . . 11
| |
| 54 | 53 | a1i 9 |
. . . . . . . . . 10
|
| 55 | mnfle 9984 |
. . . . . . . . . . 11
| |
| 56 | 4, 55 | syl 14 |
. . . . . . . . . 10
|
| 57 | 54, 4, 24, 56, 21 | xrlelttrd 10002 |
. . . . . . . . 9
|
| 58 | nmnfgt 10010 |
. . . . . . . . . 10
| |
| 59 | 24, 58 | syl 14 |
. . . . . . . . 9
|
| 60 | 57, 59 | mpbid 147 |
. . . . . . . 8
|
| 61 | xaddpnf1 10038 |
. . . . . . . 8
| |
| 62 | 24, 60, 61 | syl2anc 411 |
. . . . . . 7
|
| 63 | 52, 62 | sylan9eqr 2284 |
. . . . . 6
|
| 64 | 51, 63 | breqtrrd 4110 |
. . . . 5
|
| 65 | 64 | adantlr 477 |
. . . 4
|
| 66 | simpr 110 |
. . . . . 6
| |
| 67 | mnfle 9984 |
. . . . . . . . . 10
| |
| 68 | 14, 67 | syl 14 |
. . . . . . . . 9
|
| 69 | 54, 14, 5, 68, 12 | xrlelttrd 10002 |
. . . . . . . 8
|
| 70 | nmnfgt 10010 |
. . . . . . . . 9
| |
| 71 | 5, 70 | syl 14 |
. . . . . . . 8
|
| 72 | 69, 71 | mpbid 147 |
. . . . . . 7
|
| 73 | 72 | adantr 276 |
. . . . . 6
|
| 74 | 66, 73 | pm2.21ddne 2483 |
. . . . 5
|
| 75 | 74 | adantlr 477 |
. . . 4
|
| 76 | elxr 9968 |
. . . . . 6
| |
| 77 | 5, 76 | sylib 122 |
. . . . 5
|
| 78 | 77 | adantr 276 |
. . . 4
|
| 79 | 31, 65, 75, 78 | mpjao3dan 1341 |
. . 3
|
| 80 | simpr 110 |
. . . 4
| |
| 81 | 39 | adantr 276 |
. . . 4
|
| 82 | 80, 81 | pm2.21ddne 2483 |
. . 3
|
| 83 | oveq1 6007 |
. . . . 5
| |
| 84 | xaddmnf2 10041 |
. . . . . 6
| |
| 85 | 14, 45, 84 | syl2anc 411 |
. . . . 5
|
| 86 | 83, 85 | sylan9eqr 2284 |
. . . 4
|
| 87 | xaddnemnf 10049 |
. . . . . . 7
| |
| 88 | 24, 60, 5, 72, 87 | syl22anc 1272 |
. . . . . 6
|
| 89 | nmnfgt 10010 |
. . . . . . 7
| |
| 90 | 10, 89 | syl 14 |
. . . . . 6
|
| 91 | 88, 90 | mpbird 167 |
. . . . 5
|
| 92 | 91 | adantr 276 |
. . . 4
|
| 93 | 86, 92 | eqbrtrd 4104 |
. . 3
|
| 94 | elxr 9968 |
. . . 4
| |
| 95 | 4, 94 | sylib 122 |
. . 3
|
| 96 | 79, 82, 93, 95 | mpjao3dan 1341 |
. 2
|
| 97 | 96 | 3expia 1229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-xadd 9965 |
| This theorem is referenced by: bldisj 15069 |
| Copyright terms: Public domain | W3C validator |