![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ofc1g | GIF version |
Description: Left operation by a constant. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
ofc1.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofc1.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
ofc1.3 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofc1.4 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) |
ofc1g.ex | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐵𝑅𝐶) ∈ 𝑈) |
Ref | Expression |
---|---|
ofc1g | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofc1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | fnconstg 5455 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
4 | ofc1.3 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | ofc1.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | inidm 3372 | . 2 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
7 | fvconst2g 5776 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) | |
8 | 1, 7 | sylan 283 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑋) = 𝐵) |
9 | ofc1.4 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐶) | |
10 | ofc1g.ex | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐵𝑅𝐶) ∈ 𝑈) | |
11 | 3, 4, 5, 5, 6, 8, 9, 10 | ofvalg 6145 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (((𝐴 × {𝐵}) ∘𝑓 𝑅𝐹)‘𝑋) = (𝐵𝑅𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {csn 3622 × cxp 4661 Fn wfn 5253 ‘cfv 5258 (class class class)co 5922 ∘𝑓 cof 6133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-of 6135 |
This theorem is referenced by: ofnegsub 8986 |
Copyright terms: Public domain | W3C validator |