| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofnegsub | Unicode version | ||
| Description: Function analogue of negsub 8335. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofnegsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl 8065 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | simp2 1001 |
. 2
| |
| 4 | mulcl 8067 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | ax-1cn 8033 |
. . . . . 6
| |
| 7 | 6 | negcli 8355 |
. . . . 5
|
| 8 | 7 | fconst6 5486 |
. . . 4
|
| 9 | 8 | a1i 9 |
. . 3
|
| 10 | simp3 1002 |
. . 3
| |
| 11 | simp1 1000 |
. . 3
| |
| 12 | inidm 3386 |
. . 3
| |
| 13 | 5, 9, 10, 11, 11, 12 | off 6183 |
. 2
|
| 14 | subcl 8286 |
. . . 4
| |
| 15 | 14 | adantl 277 |
. . 3
|
| 16 | 15, 3, 10, 11, 11, 12 | off 6183 |
. 2
|
| 17 | eqidd 2207 |
. 2
| |
| 18 | 7 | a1i 9 |
. . . 4
|
| 19 | 10 | ffnd 5435 |
. . . 4
|
| 20 | eqidd 2207 |
. . . 4
| |
| 21 | 7 | a1i 9 |
. . . . 5
|
| 22 | 10 | ffvelcdmda 5727 |
. . . . 5
|
| 23 | 21, 22 | mulcld 8108 |
. . . 4
|
| 24 | 11, 18, 19, 20, 23 | ofc1g 6192 |
. . 3
|
| 25 | 22 | mulm1d 8497 |
. . 3
|
| 26 | 24, 25 | eqtrd 2239 |
. 2
|
| 27 | 3 | ffvelcdmda 5727 |
. . . 4
|
| 28 | 27, 22 | negsubd 8404 |
. . 3
|
| 29 | 3 | ffnd 5435 |
. . . 4
|
| 30 | 27, 22 | subcld 8398 |
. . . 4
|
| 31 | 29, 19, 11, 11, 12, 17, 20, 30 | ofvalg 6180 |
. . 3
|
| 32 | 28, 31 | eqtr4d 2242 |
. 2
|
| 33 | 2, 3, 13, 11, 11, 12, 16, 17, 26, 32 | offeq 6184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-setind 4592 ax-resscn 8032 ax-1cn 8033 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 df-sub 8260 df-neg 8261 |
| This theorem is referenced by: plysub 15295 |
| Copyright terms: Public domain | W3C validator |