ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofnegsub Unicode version

Theorem ofnegsub 9117
Description: Function analogue of negsub 8402. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofnegsub  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  oF  +  ( ( A  X.  { -u 1 } )  oF  x.  G ) )  =  ( F  oF  -  G )
)

Proof of Theorem ofnegsub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 8132 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
21adantl 277 . 2  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
3 simp2 1022 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F : A --> CC )
4 mulcl 8134 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
54adantl 277 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
6 ax-1cn 8100 . . . . . 6  |-  1  e.  CC
76negcli 8422 . . . . 5  |-  -u 1  e.  CC
87fconst6 5527 . . . 4  |-  ( A  X.  { -u 1 } ) : A --> CC
98a1i 9 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( A  X.  { -u 1 } ) : A --> CC )
10 simp3 1023 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G : A --> CC )
11 simp1 1021 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  A  e.  V
)
12 inidm 3413 . . 3  |-  ( A  i^i  A )  =  A
135, 9, 10, 11, 11, 12off 6237 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( A  X.  { -u 1 } )  oF  x.  G ) : A --> CC )
14 subcl 8353 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
1514adantl 277 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  -  y
)  e.  CC )
1615, 3, 10, 11, 11, 12off 6237 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  oF  -  G ) : A --> CC )
17 eqidd 2230 . 2  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  =  ( F `  x ) )
187a1i 9 . . . 4  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  -u 1  e.  CC )
1910ffnd 5474 . . . 4  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G  Fn  A
)
20 eqidd 2230 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  =  ( G `  x ) )
217a1i 9 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  -u 1  e.  CC )
2210ffvelcdmda 5772 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  e.  CC )
2321, 22mulcld 8175 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( -u 1  x.  ( G `  x
) )  e.  CC )
2411, 18, 19, 20, 23ofc1g 6246 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( A  X.  { -u 1 } )  oF  x.  G ) `
 x )  =  ( -u 1  x.  ( G `  x
) ) )
2522mulm1d 8564 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( -u 1  x.  ( G `  x
) )  =  -u ( G `  x ) )
2624, 25eqtrd 2262 . 2  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( A  X.  { -u 1 } )  oF  x.  G ) `
 x )  = 
-u ( G `  x ) )
273ffvelcdmda 5772 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  e.  CC )
2827, 22negsubd 8471 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F `  x )  +  -u ( G `  x ) )  =  ( ( F `  x )  -  ( G `  x )
) )
293ffnd 5474 . . . 4  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F  Fn  A
)
3027, 22subcld 8465 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F `  x )  -  ( G `  x ) )  e.  CC )
3129, 19, 11, 11, 12, 17, 20, 30ofvalg 6234 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F  oF  -  G
) `  x )  =  ( ( F `
 x )  -  ( G `  x ) ) )
3228, 31eqtr4d 2265 . 2  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F `  x )  +  -u ( G `  x ) )  =  ( ( F  oF  -  G ) `  x ) )
332, 3, 13, 11, 11, 12, 16, 17, 26, 32offeq 6238 1  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  oF  +  ( ( A  X.  { -u 1 } )  oF  x.  G ) )  =  ( F  oF  -  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   {csn 3666    X. cxp 4717   -->wf 5314   ` cfv 5318  (class class class)co 6007    oFcof 6222   CCcc 8005   1c1 8008    + caddc 8010    x. cmul 8012    - cmin 8325   -ucneg 8326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8099  ax-1cn 8100  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-sub 8327  df-neg 8328
This theorem is referenced by:  plysub  15435
  Copyright terms: Public domain W3C validator