| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofnegsub | Unicode version | ||
| Description: Function analogue of negsub 8382. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofnegsub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl 8112 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | simp2 1022 |
. 2
| |
| 4 | mulcl 8114 |
. . . 4
| |
| 5 | 4 | adantl 277 |
. . 3
|
| 6 | ax-1cn 8080 |
. . . . . 6
| |
| 7 | 6 | negcli 8402 |
. . . . 5
|
| 8 | 7 | fconst6 5521 |
. . . 4
|
| 9 | 8 | a1i 9 |
. . 3
|
| 10 | simp3 1023 |
. . 3
| |
| 11 | simp1 1021 |
. . 3
| |
| 12 | inidm 3413 |
. . 3
| |
| 13 | 5, 9, 10, 11, 11, 12 | off 6221 |
. 2
|
| 14 | subcl 8333 |
. . . 4
| |
| 15 | 14 | adantl 277 |
. . 3
|
| 16 | 15, 3, 10, 11, 11, 12 | off 6221 |
. 2
|
| 17 | eqidd 2230 |
. 2
| |
| 18 | 7 | a1i 9 |
. . . 4
|
| 19 | 10 | ffnd 5470 |
. . . 4
|
| 20 | eqidd 2230 |
. . . 4
| |
| 21 | 7 | a1i 9 |
. . . . 5
|
| 22 | 10 | ffvelcdmda 5763 |
. . . . 5
|
| 23 | 21, 22 | mulcld 8155 |
. . . 4
|
| 24 | 11, 18, 19, 20, 23 | ofc1g 6230 |
. . 3
|
| 25 | 22 | mulm1d 8544 |
. . 3
|
| 26 | 24, 25 | eqtrd 2262 |
. 2
|
| 27 | 3 | ffvelcdmda 5763 |
. . . 4
|
| 28 | 27, 22 | negsubd 8451 |
. . 3
|
| 29 | 3 | ffnd 5470 |
. . . 4
|
| 30 | 27, 22 | subcld 8445 |
. . . 4
|
| 31 | 29, 19, 11, 11, 12, 17, 20, 30 | ofvalg 6218 |
. . 3
|
| 32 | 28, 31 | eqtr4d 2265 |
. 2
|
| 33 | 2, 3, 13, 11, 11, 12, 16, 17, 26, 32 | offeq 6222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 ax-resscn 8079 ax-1cn 8080 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-sub 8307 df-neg 8308 |
| This theorem is referenced by: plysub 15412 |
| Copyright terms: Public domain | W3C validator |