ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofnegsub Unicode version

Theorem ofnegsub 8986
Description: Function analogue of negsub 8272. (Contributed by Mario Carneiro, 24-Jul-2014.)
Assertion
Ref Expression
ofnegsub  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  oF  +  ( ( A  X.  { -u 1 } )  oF  x.  G ) )  =  ( F  oF  -  G )
)

Proof of Theorem ofnegsub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 8002 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
21adantl 277 . 2  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
3 simp2 1000 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F : A --> CC )
4 mulcl 8004 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
54adantl 277 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
6 ax-1cn 7970 . . . . . 6  |-  1  e.  CC
76negcli 8292 . . . . 5  |-  -u 1  e.  CC
87fconst6 5457 . . . 4  |-  ( A  X.  { -u 1 } ) : A --> CC
98a1i 9 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( A  X.  { -u 1 } ) : A --> CC )
10 simp3 1001 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G : A --> CC )
11 simp1 999 . . 3  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  A  e.  V
)
12 inidm 3372 . . 3  |-  ( A  i^i  A )  =  A
135, 9, 10, 11, 11, 12off 6148 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( ( A  X.  { -u 1 } )  oF  x.  G ) : A --> CC )
14 subcl 8223 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
1514adantl 277 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  -  y
)  e.  CC )
1615, 3, 10, 11, 11, 12off 6148 . 2  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  oF  -  G ) : A --> CC )
17 eqidd 2197 . 2  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  =  ( F `  x ) )
187a1i 9 . . . 4  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  -u 1  e.  CC )
1910ffnd 5408 . . . 4  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  G  Fn  A
)
20 eqidd 2197 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  =  ( G `  x ) )
217a1i 9 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  -u 1  e.  CC )
2210ffvelcdmda 5697 . . . . 5  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( G `  x )  e.  CC )
2321, 22mulcld 8045 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( -u 1  x.  ( G `  x
) )  e.  CC )
2411, 18, 19, 20, 23ofc1g 6156 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( A  X.  { -u 1 } )  oF  x.  G ) `
 x )  =  ( -u 1  x.  ( G `  x
) ) )
2522mulm1d 8434 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( -u 1  x.  ( G `  x
) )  =  -u ( G `  x ) )
2624, 25eqtrd 2229 . 2  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( (
( A  X.  { -u 1 } )  oF  x.  G ) `
 x )  = 
-u ( G `  x ) )
273ffvelcdmda 5697 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( F `  x )  e.  CC )
2827, 22negsubd 8341 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F `  x )  +  -u ( G `  x ) )  =  ( ( F `  x )  -  ( G `  x )
) )
293ffnd 5408 . . . 4  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  F  Fn  A
)
3027, 22subcld 8335 . . . 4  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F `  x )  -  ( G `  x ) )  e.  CC )
3129, 19, 11, 11, 12, 17, 20, 30ofvalg 6145 . . 3  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F  oF  -  G
) `  x )  =  ( ( F `
 x )  -  ( G `  x ) ) )
3228, 31eqtr4d 2232 . 2  |-  ( ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  /\  x  e.  A
)  ->  ( ( F `  x )  +  -u ( G `  x ) )  =  ( ( F  oF  -  G ) `  x ) )
332, 3, 13, 11, 11, 12, 16, 17, 26, 32offeq 6149 1  |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  oF  +  ( ( A  X.  { -u 1 } )  oF  x.  G ) )  =  ( F  oF  -  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   {csn 3622    X. cxp 4661   -->wf 5254   ` cfv 5258  (class class class)co 5922    oFcof 6133   CCcc 7875   1c1 7878    + caddc 7880    x. cmul 7882    - cmin 8195   -ucneg 8196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7969  ax-1cn 7970  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-sub 8197  df-neg 8198
This theorem is referenced by:  plysub  14965
  Copyright terms: Public domain W3C validator