Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelcnv | GIF version |
Description: Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelcnv | ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelcnvg 4784 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅)) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ ◡𝑅 ↔ 〈𝐵, 𝐴〉 ∈ 𝑅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 Vcvv 2726 〈cop 3579 ◡ccnv 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 |
This theorem is referenced by: cnvopab 5005 cnv0 5007 cnvdif 5010 dfrel2 5054 cnvcnvsn 5080 cnvresima 5093 dfco2 5103 cnviinm 5145 fcnvres 5371 dmtpos 6224 dftpos4 6231 tpostpos 6232 fisumcom2 11379 fprodcom2fi 11567 |
Copyright terms: Public domain | W3C validator |