Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opnneiid | GIF version |
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
opnneiid | ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii2 12520 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥 ∈ 𝐽 (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) | |
2 | eqss 3143 | . . . . . 6 ⊢ (𝑁 = 𝑥 ↔ (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) | |
3 | eleq1a 2229 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 → (𝑁 = 𝑥 → 𝑁 ∈ 𝐽)) | |
4 | 2, 3 | syl5bir 152 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → ((𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ 𝐽)) |
5 | 4 | rexlimiv 2568 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ 𝐽) |
6 | 1, 5 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁 ∈ 𝐽) |
7 | 6 | ex 114 | . 2 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁 ∈ 𝐽)) |
8 | ssid 3148 | . . 3 ⊢ 𝑁 ⊆ 𝑁 | |
9 | opnneiss 12529 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁)) | |
10 | 9 | 3exp 1184 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → (𝑁 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑁)))) |
11 | 8, 10 | mpii 44 | . 2 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → 𝑁 ∈ ((nei‘𝐽)‘𝑁))) |
12 | 7, 11 | impbid 128 | 1 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ∃wrex 2436 ⊆ wss 3102 ‘cfv 5169 Topctop 12366 neicnei 12509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-top 12367 df-nei 12510 |
This theorem is referenced by: 0nei 12537 |
Copyright terms: Public domain | W3C validator |