Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opnneiid | GIF version |
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
opnneiid | ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii2 12789 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥 ∈ 𝐽 (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) | |
2 | eqss 3157 | . . . . . 6 ⊢ (𝑁 = 𝑥 ↔ (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) | |
3 | eleq1a 2238 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 → (𝑁 = 𝑥 → 𝑁 ∈ 𝐽)) | |
4 | 2, 3 | syl5bir 152 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → ((𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ 𝐽)) |
5 | 4 | rexlimiv 2577 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ 𝐽) |
6 | 1, 5 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁 ∈ 𝐽) |
7 | 6 | ex 114 | . 2 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁 ∈ 𝐽)) |
8 | ssid 3162 | . . 3 ⊢ 𝑁 ⊆ 𝑁 | |
9 | opnneiss 12798 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁)) | |
10 | 9 | 3exp 1192 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → (𝑁 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑁)))) |
11 | 8, 10 | mpii 44 | . 2 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → 𝑁 ∈ ((nei‘𝐽)‘𝑁))) |
12 | 7, 11 | impbid 128 | 1 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 ‘cfv 5188 Topctop 12635 neicnei 12778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-top 12636 df-nei 12779 |
This theorem is referenced by: 0nei 12806 |
Copyright terms: Public domain | W3C validator |