ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnneiid GIF version

Theorem opnneiid 12228
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
opnneiid (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))

Proof of Theorem opnneiid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neii2 12213 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥𝐽 (𝑁𝑥𝑥𝑁))
2 eqss 3080 . . . . . 6 (𝑁 = 𝑥 ↔ (𝑁𝑥𝑥𝑁))
3 eleq1a 2187 . . . . . 6 (𝑥𝐽 → (𝑁 = 𝑥𝑁𝐽))
42, 3syl5bir 152 . . . . 5 (𝑥𝐽 → ((𝑁𝑥𝑥𝑁) → 𝑁𝐽))
54rexlimiv 2518 . . . 4 (∃𝑥𝐽 (𝑁𝑥𝑥𝑁) → 𝑁𝐽)
61, 5syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁𝐽)
76ex 114 . 2 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁𝐽))
8 ssid 3085 . . 3 𝑁𝑁
9 opnneiss 12222 . . . 4 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑁𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁))
1093exp 1163 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑁𝑁𝑁 ∈ ((nei‘𝐽)‘𝑁))))
118, 10mpii 44 . 2 (𝐽 ∈ Top → (𝑁𝐽𝑁 ∈ ((nei‘𝐽)‘𝑁)))
127, 11impbid 128 1 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wcel 1463  wrex 2392  wss 3039  cfv 5091  Topctop 12059  neicnei 12202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-top 12060  df-nei 12203
This theorem is referenced by:  0nei  12230
  Copyright terms: Public domain W3C validator