ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnneiid GIF version

Theorem opnneiid 12333
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
opnneiid (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))

Proof of Theorem opnneiid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neii2 12318 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥𝐽 (𝑁𝑥𝑥𝑁))
2 eqss 3112 . . . . . 6 (𝑁 = 𝑥 ↔ (𝑁𝑥𝑥𝑁))
3 eleq1a 2211 . . . . . 6 (𝑥𝐽 → (𝑁 = 𝑥𝑁𝐽))
42, 3syl5bir 152 . . . . 5 (𝑥𝐽 → ((𝑁𝑥𝑥𝑁) → 𝑁𝐽))
54rexlimiv 2543 . . . 4 (∃𝑥𝐽 (𝑁𝑥𝑥𝑁) → 𝑁𝐽)
61, 5syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁𝐽)
76ex 114 . 2 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁𝐽))
8 ssid 3117 . . 3 𝑁𝑁
9 opnneiss 12327 . . . 4 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑁𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁))
1093exp 1180 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑁𝑁𝑁 ∈ ((nei‘𝐽)‘𝑁))))
118, 10mpii 44 . 2 (𝐽 ∈ Top → (𝑁𝐽𝑁 ∈ ((nei‘𝐽)‘𝑁)))
127, 11impbid 128 1 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wrex 2417  wss 3071  cfv 5123  Topctop 12164  neicnei 12307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-top 12165  df-nei 12308
This theorem is referenced by:  0nei  12335
  Copyright terms: Public domain W3C validator