ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnneiid GIF version

Theorem opnneiid 12958
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
Assertion
Ref Expression
opnneiid (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))

Proof of Theorem opnneiid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neii2 12943 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥𝐽 (𝑁𝑥𝑥𝑁))
2 eqss 3162 . . . . . 6 (𝑁 = 𝑥 ↔ (𝑁𝑥𝑥𝑁))
3 eleq1a 2242 . . . . . 6 (𝑥𝐽 → (𝑁 = 𝑥𝑁𝐽))
42, 3syl5bir 152 . . . . 5 (𝑥𝐽 → ((𝑁𝑥𝑥𝑁) → 𝑁𝐽))
54rexlimiv 2581 . . . 4 (∃𝑥𝐽 (𝑁𝑥𝑥𝑁) → 𝑁𝐽)
61, 5syl 14 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁𝐽)
76ex 114 . 2 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁𝐽))
8 ssid 3167 . . 3 𝑁𝑁
9 opnneiss 12952 . . . 4 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑁𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁))
1093exp 1197 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑁𝑁𝑁 ∈ ((nei‘𝐽)‘𝑁))))
118, 10mpii 44 . 2 (𝐽 ∈ Top → (𝑁𝐽𝑁 ∈ ((nei‘𝐽)‘𝑁)))
127, 11impbid 128 1 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wrex 2449  wss 3121  cfv 5198  Topctop 12789  neicnei 12932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-top 12790  df-nei 12933
This theorem is referenced by:  0nei  12960
  Copyright terms: Public domain W3C validator