![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opnneiid | GIF version |
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
opnneiid | β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii2 13789 | . . . 4 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ₯ β π½ (π β π₯ β§ π₯ β π)) | |
2 | eqss 3172 | . . . . . 6 β’ (π = π₯ β (π β π₯ β§ π₯ β π)) | |
3 | eleq1a 2249 | . . . . . 6 β’ (π₯ β π½ β (π = π₯ β π β π½)) | |
4 | 2, 3 | biimtrrid 153 | . . . . 5 β’ (π₯ β π½ β ((π β π₯ β§ π₯ β π) β π β π½)) |
5 | 4 | rexlimiv 2588 | . . . 4 β’ (βπ₯ β π½ (π β π₯ β§ π₯ β π) β π β π½) |
6 | 1, 5 | syl 14 | . . 3 β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β π½) |
7 | 6 | ex 115 | . 2 β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π½)) |
8 | ssid 3177 | . . 3 β’ π β π | |
9 | opnneiss 13798 | . . . 4 β’ ((π½ β Top β§ π β π½ β§ π β π) β π β ((neiβπ½)βπ)) | |
10 | 9 | 3exp 1202 | . . 3 β’ (π½ β Top β (π β π½ β (π β π β π β ((neiβπ½)βπ)))) |
11 | 8, 10 | mpii 44 | . 2 β’ (π½ β Top β (π β π½ β π β ((neiβπ½)βπ))) |
12 | 7, 11 | impbid 129 | 1 β’ (π½ β Top β (π β ((neiβπ½)βπ) β π β π½)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwrex 2456 β wss 3131 βcfv 5218 Topctop 13637 neicnei 13778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-top 13638 df-nei 13779 |
This theorem is referenced by: 0nei 13806 |
Copyright terms: Public domain | W3C validator |