Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opnneiid | GIF version |
Description: Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.) |
Ref | Expression |
---|---|
opnneiid | ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii2 12943 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → ∃𝑥 ∈ 𝐽 (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) | |
2 | eqss 3162 | . . . . . 6 ⊢ (𝑁 = 𝑥 ↔ (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁)) | |
3 | eleq1a 2242 | . . . . . 6 ⊢ (𝑥 ∈ 𝐽 → (𝑁 = 𝑥 → 𝑁 ∈ 𝐽)) | |
4 | 2, 3 | syl5bir 152 | . . . . 5 ⊢ (𝑥 ∈ 𝐽 → ((𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ 𝐽)) |
5 | 4 | rexlimiv 2581 | . . . 4 ⊢ (∃𝑥 ∈ 𝐽 (𝑁 ⊆ 𝑥 ∧ 𝑥 ⊆ 𝑁) → 𝑁 ∈ 𝐽) |
6 | 1, 5 | syl 14 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑁)) → 𝑁 ∈ 𝐽) |
7 | 6 | ex 114 | . 2 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) → 𝑁 ∈ 𝐽)) |
8 | ssid 3167 | . . 3 ⊢ 𝑁 ⊆ 𝑁 | |
9 | opnneiss 12952 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑁 ⊆ 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘𝑁)) | |
10 | 9 | 3exp 1197 | . . 3 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → (𝑁 ⊆ 𝑁 → 𝑁 ∈ ((nei‘𝐽)‘𝑁)))) |
11 | 8, 10 | mpii 44 | . 2 ⊢ (𝐽 ∈ Top → (𝑁 ∈ 𝐽 → 𝑁 ∈ ((nei‘𝐽)‘𝑁))) |
12 | 7, 11 | impbid 128 | 1 ⊢ (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑁) ↔ 𝑁 ∈ 𝐽)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 ⊆ wss 3121 ‘cfv 5198 Topctop 12789 neicnei 12932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-nei 12933 |
This theorem is referenced by: 0nei 12960 |
Copyright terms: Public domain | W3C validator |