ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabco Unicode version

Theorem oprabco 6196
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
oprabco.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )
oprabco.2  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
oprabco.3  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C
) )
Assertion
Ref Expression
oprabco  |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
Distinct variable groups:    x, y, A   
x, B, y    x, D, y    x, H, y
Allowed substitution hints:    C( x, y)    F( x, y)    G( x, y)

Proof of Theorem oprabco
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 oprabco.3 . 2  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C
) )
2 oprabco.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )
32adantl 275 . . 3  |-  ( ( H  Fn  D  /\  ( x  e.  A  /\  y  e.  B
) )  ->  C  e.  D )
4 oprabco.2 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
54a1i 9 . . 3  |-  ( H  Fn  D  ->  F  =  ( x  e.  A ,  y  e.  B  |->  C ) )
6 dffn5im 5542 . . 3  |-  ( H  Fn  D  ->  H  =  ( z  e.  D  |->  ( H `  z ) ) )
7 fveq2 5496 . . 3  |-  ( z  =  C  ->  ( H `  z )  =  ( H `  C ) )
83, 5, 6, 7fmpoco 6195 . 2  |-  ( H  Fn  D  ->  ( H  o.  F )  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C ) ) )
91, 8eqtr4id 2222 1  |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    o. ccom 4615    Fn wfn 5193   ` cfv 5198    e. cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120
This theorem is referenced by:  oprab2co  6197
  Copyright terms: Public domain W3C validator