ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabco Unicode version

Theorem oprabco 6326
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
oprabco.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )
oprabco.2  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
oprabco.3  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C
) )
Assertion
Ref Expression
oprabco  |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
Distinct variable groups:    x, y, A   
x, B, y    x, D, y    x, H, y
Allowed substitution hints:    C( x, y)    F( x, y)    G( x, y)

Proof of Theorem oprabco
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 oprabco.3 . 2  |-  G  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C
) )
2 oprabco.1 . . . 4  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )
32adantl 277 . . 3  |-  ( ( H  Fn  D  /\  ( x  e.  A  /\  y  e.  B
) )  ->  C  e.  D )
4 oprabco.2 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
54a1i 9 . . 3  |-  ( H  Fn  D  ->  F  =  ( x  e.  A ,  y  e.  B  |->  C ) )
6 dffn5im 5647 . . 3  |-  ( H  Fn  D  ->  H  =  ( z  e.  D  |->  ( H `  z ) ) )
7 fveq2 5599 . . 3  |-  ( z  =  C  ->  ( H `  z )  =  ( H `  C ) )
83, 5, 6, 7fmpoco 6325 . 2  |-  ( H  Fn  D  ->  ( H  o.  F )  =  ( x  e.  A ,  y  e.  B  |->  ( H `  C ) ) )
91, 8eqtr4id 2259 1  |-  ( H  Fn  D  ->  G  =  ( H  o.  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    o. ccom 4697    Fn wfn 5285   ` cfv 5290    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250
This theorem is referenced by:  oprab2co  6327
  Copyright terms: Public domain W3C validator