ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabco GIF version

Theorem oprabco 6107
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
oprabco.1 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
oprabco.2 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
oprabco.3 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))
Assertion
Ref Expression
oprabco (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprabco
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oprabco.1 . . . 4 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
21adantl 275 . . 3 ((𝐻 Fn 𝐷 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝐷)
3 oprabco.2 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
43a1i 9 . . 3 (𝐻 Fn 𝐷𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
5 dffn5im 5460 . . 3 (𝐻 Fn 𝐷𝐻 = (𝑧𝐷 ↦ (𝐻𝑧)))
6 fveq2 5414 . . 3 (𝑧 = 𝐶 → (𝐻𝑧) = (𝐻𝐶))
72, 4, 5, 6fmpoco 6106 . 2 (𝐻 Fn 𝐷 → (𝐻𝐹) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶)))
8 oprabco.3 . 2 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))
97, 8syl6reqr 2189 1 (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  ccom 4538   Fn wfn 5113  cfv 5118  cmpo 5769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032
This theorem is referenced by:  oprab2co  6108
  Copyright terms: Public domain W3C validator