ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprabco GIF version

Theorem oprabco 6321
Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
oprabco.1 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
oprabco.2 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
oprabco.3 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))
Assertion
Ref Expression
oprabco (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprabco
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 oprabco.3 . 2 𝐺 = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶))
2 oprabco.1 . . . 4 ((𝑥𝐴𝑦𝐵) → 𝐶𝐷)
32adantl 277 . . 3 ((𝐻 Fn 𝐷 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝐷)
4 oprabco.2 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
54a1i 9 . . 3 (𝐻 Fn 𝐷𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
6 dffn5im 5642 . . 3 (𝐻 Fn 𝐷𝐻 = (𝑧𝐷 ↦ (𝐻𝑧)))
7 fveq2 5594 . . 3 (𝑧 = 𝐶 → (𝐻𝑧) = (𝐻𝐶))
83, 5, 6, 7fmpoco 6320 . 2 (𝐻 Fn 𝐷 → (𝐻𝐹) = (𝑥𝐴, 𝑦𝐵 ↦ (𝐻𝐶)))
91, 8eqtr4id 2258 1 (𝐻 Fn 𝐷𝐺 = (𝐻𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  ccom 4692   Fn wfn 5280  cfv 5285  cmpo 5964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245
This theorem is referenced by:  oprab2co  6322
  Copyright terms: Public domain W3C validator