| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprabco | GIF version | ||
| Description: Composition of a function with an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
| Ref | Expression |
|---|---|
| oprabco.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) |
| oprabco.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| oprabco.3 | ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) |
| Ref | Expression |
|---|---|
| oprabco | ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oprabco.3 | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶)) | |
| 2 | oprabco.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝐶 ∈ 𝐷) | |
| 3 | 2 | adantl 277 | . . 3 ⊢ ((𝐻 Fn 𝐷 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐷) |
| 4 | oprabco.2 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝐻 Fn 𝐷 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) |
| 6 | dffn5im 5678 | . . 3 ⊢ (𝐻 Fn 𝐷 → 𝐻 = (𝑧 ∈ 𝐷 ↦ (𝐻‘𝑧))) | |
| 7 | fveq2 5626 | . . 3 ⊢ (𝑧 = 𝐶 → (𝐻‘𝑧) = (𝐻‘𝐶)) | |
| 8 | 3, 5, 6, 7 | fmpoco 6360 | . 2 ⊢ (𝐻 Fn 𝐷 → (𝐻 ∘ 𝐹) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ (𝐻‘𝐶))) |
| 9 | 1, 8 | eqtr4id 2281 | 1 ⊢ (𝐻 Fn 𝐷 → 𝐺 = (𝐻 ∘ 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∘ ccom 4722 Fn wfn 5312 ‘cfv 5317 ∈ cmpo 6002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 |
| This theorem is referenced by: oprab2co 6362 |
| Copyright terms: Public domain | W3C validator |