ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ot1stg GIF version

Theorem ot1stg 6238
Description: Extract the first member of an ordered triple. (Due to infrequent usage, it isn't worthwhile at this point to define special extractors for triples, so we reuse the ordered pair extractors for ot1stg 6238, ot2ndg 6239, ot3rdgg 6240.) (Contributed by NM, 3-Apr-2015.) (Revised by Mario Carneiro, 2-May-2015.)
Assertion
Ref Expression
ot1stg ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)

Proof of Theorem ot1stg
StepHypRef Expression
1 df-ot 3643 . . . . 5 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
21fveq2i 5579 . . . 4 (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
3 opexg 4272 . . . . . 6 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ ∈ V)
4 op1stg 6236 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
53, 4sylan 283 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
653impa 1197 . . . 4 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘⟨⟨𝐴, 𝐵⟩, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
72, 6eqtrid 2250 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘⟨𝐴, 𝐵, 𝐶⟩) = ⟨𝐴, 𝐵⟩)
87fveq2d 5580 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = (1st ‘⟨𝐴, 𝐵⟩))
9 op1stg 6236 . . 3 ((𝐴𝑉𝐵𝑊) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
1093adant3 1020 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
118, 10eqtrd 2238 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (1st ‘(1st ‘⟨𝐴, 𝐵, 𝐶⟩)) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2176  Vcvv 2772  cop 3636  cotp 3637  cfv 5271  1st c1st 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-ot 3643  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-1st 6226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator