ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbagf Unicode version

Theorem psrbagf 14547
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbagf  |-  ( F  e.  D  ->  F : I --> NN0 )
Distinct variable groups:    f, F    f, I
Allowed substitution hint:    D( f)

Proof of Theorem psrbagf
StepHypRef Expression
1 psrbag.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
21eleq2i 2274 . 2  |-  ( F  e.  D  <->  F  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
3 elrabi 2933 . . 3  |-  ( F  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  ->  F  e.  ( NN0  ^m  I ) )
4 elmapi 6780 . . 3  |-  ( F  e.  ( NN0  ^m  I )  ->  F : I --> NN0 )
53, 4syl 14 . 2  |-  ( F  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  ->  F : I --> NN0 )
62, 5sylbi 121 1  |-  ( F  e.  D  ->  F : I --> NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   {crab 2490   `'ccnv 4692   "cima 4696   -->wf 5286  (class class class)co 5967    ^m cmap 6758   Fincfn 6850   NNcn 9071   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator