ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbagf Unicode version

Theorem psrbagf 14432
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbagf  |-  ( F  e.  D  ->  F : I --> NN0 )
Distinct variable groups:    f, F    f, I
Allowed substitution hint:    D( f)

Proof of Theorem psrbagf
StepHypRef Expression
1 psrbag.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
21eleq2i 2272 . 2  |-  ( F  e.  D  <->  F  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
3 elrabi 2926 . . 3  |-  ( F  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  ->  F  e.  ( NN0  ^m  I ) )
4 elmapi 6757 . . 3  |-  ( F  e.  ( NN0  ^m  I )  ->  F : I --> NN0 )
53, 4syl 14 . 2  |-  ( F  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  ->  F : I --> NN0 )
62, 5sylbi 121 1  |-  ( F  e.  D  ->  F : I --> NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {crab 2488   `'ccnv 4674   "cima 4678   -->wf 5267  (class class class)co 5944    ^m cmap 6735   Fincfn 6827   NNcn 9036   NN0cn0 9295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator