ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbagf Unicode version

Theorem psrbagf 14300
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbagf  |-  ( F  e.  D  ->  F : I --> NN0 )
Distinct variable groups:    f, F    f, I
Allowed substitution hint:    D( f)

Proof of Theorem psrbagf
StepHypRef Expression
1 psrbag.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
21eleq2i 2263 . 2  |-  ( F  e.  D  <->  F  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
3 elrabi 2917 . . 3  |-  ( F  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  ->  F  e.  ( NN0  ^m  I ) )
4 elmapi 6738 . . 3  |-  ( F  e.  ( NN0  ^m  I )  ->  F : I --> NN0 )
53, 4syl 14 . 2  |-  ( F  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  ->  F : I --> NN0 )
62, 5sylbi 121 1  |-  ( F  e.  D  ->  F : I --> NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {crab 2479   `'ccnv 4663   "cima 4667   -->wf 5255  (class class class)co 5925    ^m cmap 6716   Fincfn 6808   NNcn 9007   NN0cn0 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-map 6718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator