ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbag Unicode version

Theorem psrbag 14166
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbag  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
Distinct variable groups:    f, F    f, I
Allowed substitution hints:    D( f)    V( f)

Proof of Theorem psrbag
StepHypRef Expression
1 cnveq 4837 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
21imaeq1d 5005 . . . 4  |-  ( f  =  F  ->  ( `' f " NN )  =  ( `' F " NN ) )
32eleq1d 2262 . . 3  |-  ( f  =  F  ->  (
( `' f " NN )  e.  Fin  <->  ( `' F " NN )  e.  Fin ) )
4 psrbag.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
53, 4elrab2 2920 . 2  |-  ( F  e.  D  <->  ( F  e.  ( NN0  ^m  I
)  /\  ( `' F " NN )  e. 
Fin ) )
6 nn0ex 9249 . . . 4  |-  NN0  e.  _V
7 elmapg 6717 . . . 4  |-  ( ( NN0  e.  _V  /\  I  e.  V )  ->  ( F  e.  ( NN0  ^m  I )  <-> 
F : I --> NN0 )
)
86, 7mpan 424 . . 3  |-  ( I  e.  V  ->  ( F  e.  ( NN0  ^m  I )  <->  F :
I --> NN0 ) )
98anbi1d 465 . 2  |-  ( I  e.  V  ->  (
( F  e.  ( NN0  ^m  I )  /\  ( `' F " NN )  e.  Fin ) 
<->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
105, 9bitrid 192 1  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760   `'ccnv 4659   "cima 4663   -->wf 5251  (class class class)co 5919    ^m cmap 6704   Fincfn 6796   NNcn 8984   NN0cn0 9243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-i2m1 7979
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706  df-inn 8985  df-n0 9244
This theorem is referenced by:  fczpsrbag  14168  psrbaglesuppg  14169
  Copyright terms: Public domain W3C validator