ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrbag Unicode version

Theorem psrbag 14633
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
Assertion
Ref Expression
psrbag  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
Distinct variable groups:    f, F    f, I
Allowed substitution hints:    D( f)    V( f)

Proof of Theorem psrbag
StepHypRef Expression
1 cnveq 4896 . . . . 5  |-  ( f  =  F  ->  `' f  =  `' F
)
21imaeq1d 5067 . . . 4  |-  ( f  =  F  ->  ( `' f " NN )  =  ( `' F " NN ) )
32eleq1d 2298 . . 3  |-  ( f  =  F  ->  (
( `' f " NN )  e.  Fin  <->  ( `' F " NN )  e.  Fin ) )
4 psrbag.d . . 3  |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
53, 4elrab2 2962 . 2  |-  ( F  e.  D  <->  ( F  e.  ( NN0  ^m  I
)  /\  ( `' F " NN )  e. 
Fin ) )
6 nn0ex 9375 . . . 4  |-  NN0  e.  _V
7 elmapg 6808 . . . 4  |-  ( ( NN0  e.  _V  /\  I  e.  V )  ->  ( F  e.  ( NN0  ^m  I )  <-> 
F : I --> NN0 )
)
86, 7mpan 424 . . 3  |-  ( I  e.  V  ->  ( F  e.  ( NN0  ^m  I )  <->  F :
I --> NN0 ) )
98anbi1d 465 . 2  |-  ( I  e.  V  ->  (
( F  e.  ( NN0  ^m  I )  /\  ( `' F " NN )  e.  Fin ) 
<->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
105, 9bitrid 192 1  |-  ( I  e.  V  ->  ( F  e.  D  <->  ( F : I --> NN0  /\  ( `' F " NN )  e.  Fin ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   `'ccnv 4718   "cima 4722   -->wf 5314  (class class class)co 6001    ^m cmap 6795   Fincfn 6887   NNcn 9110   NN0cn0 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-i2m1 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-map 6797  df-inn 9111  df-n0 9370
This theorem is referenced by:  fczpsrbag  14635  psrbaglesuppg  14636
  Copyright terms: Public domain W3C validator